
Page 1

ProntoScript Developer’s Guide

Page 2 ProntoScript Developer’s Guide Version 1.0

Disclaimer

Conditions to the use of the ProntoScript Developers Guide

1. ProntoScript Developers Guide and its documentation (hereafter “PSDG”)
The PSDG has been written by Philips for owners and users of Pronto products as guidance to develop new
software-modules in ProntoScript. The PSDG is destined to be used only by persons, who are professional
users or installers of Pronto products and who are trained to use the PSDG to develop software-modules
in ProntoScript (hereafter “User”).

2. Intellectual property and ownership
The PSDG is intellectual property of Philips. By using the PSDG User agrees that the PSDG is, shall be and
shall remain the intellectual property of Philips. User shall immediately cease using the PSDG upon first
demand of Philips.

3. License grant
Under its intellectual property Philips hereby grants to User a royalty-free, non-exclusive, non-
transferable license solely to use the PSDG as guidance to develop software-modules in Pronto Script.
The rights of User are limited to the foregoing. By using the PSDG User accepts the preceding license
grant and acknowledges that the PSDG constitutes a valuable asset of Philips. Accordingly, except as
expressly permitted under the license grant, User agrees not to:
(a) otherwise use the PIP;
(b) modify, adapt, alter, translate, disassemble, re-create, copy, decompile, reverse engineer, or create

derivative works from the PSDG, Pronto products and/or the ProntoScript, or;
(c) sublicense, lease, rent, or otherwise transfer the PSDG to any third party.

4. Warranty and indemnification
Philips provides the PSDG “as is” as courtesy to User, “as is” means that Philips provides the PSDG
without any warranty or support. User is allowed to use the PSDG, accordingly the license grant, at its
own risk and responsibility. By using the PSDG User indemnifies Philips for all claims by any party caused
by or in connection with the use of the PSDG by User. Furthermore User shall not hold Philips liable for
direct, indirect, special, consequential or incidental damages, including but not limited to lost profits,
business interruption, or corruption or loss of data or information, caused by or in connection with the
use of the PSDG by User.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 3

Preface
This is the first edition of the ProntoScript Developer’s Guide. It is targeted towards programmers who
want to develop rich 2-way applications for the Pronto Professional Platform. Custom installers who
want to integrate such 2-way modules into projects are not the intended audience. In that case we can
offer the "ProntoScript Installer’s Guide".

Using this guide
The guide assumes you have some background in programming, either with languages like C, C++, Java
or other languages, or with JavaScript. Even so, it is built up from easy to advanced, with plenty of
examples to make the process of getting familiar with ProntoScript a fun experience:

For the experienced programmer
You can find snippets of proven, best practice code, before exploiting the full freedom of writing your
own, custom code.

For the novice programmer and Pronto enthusiast
You can experiment with working, useful, real life examples that demonstrate what ProntoScript can do
in automation projects.

This document does not strive for completeness. For a complete description of Javascript 1.6, on which
ProntoScript is based, we refer to David Flanagan's "Javascript, the Definitive Guide, 5th edition"
published with O'Reilly [Flanagan].

ProntoScript Developer’s Guide

Page 4 ProntoScript Developer’s Guide Version 1.0

Table of Contents
DISCLAIMER..2
PREFACE...3

USING THIS GUIDE ... 3
TABLE OF CONTENTS..4
CHAPTER 1. INTRODUCTION..8

1.1. WHY PRONTOSCRIPT?.. 8
1.2. A SIMPLE BUTTON SCRIPT.. 9
1.3. PRONTOSCRIPT FEATURES .. 10

CHAPTER 2. CORE JAVASCRIPT..12
2.1. VARIABLES .. 12

Primitive types... 12
Numbers...12
Strings ..12
Boolean..13

Arrays ... 13
2.2. OPERATORS .. 13

Arithmetic operators .. 14
Comparative operators.. 14
Bitwise operators... 15

2.3. STATEMENT BLOCKS... 15
2.4. CONTROL FLOW ... 15

if/else .. 15
switch blocks... 16
while loops .. 16
for loops.. 17
break statement .. 17

2.5. EXCEPTIONS .. 17
2.6. FUNCTIONS.. 17
2.7. OBJECTS ... 18
2.8. REGULAR EXPRESSIONS ... 18
2.9. MATH OBJECT.. 18

CHAPTER 3. WIDGETS ...19
3.1. PANELS... 20
3.2. BUTTONS .. 23
3.3. HARD BUTTONS .. 24
3.4. FIRM KEYS... 24

CHAPTER 4. ACTION LISTS ...26
CHAPTER 5. TIMERS...27

5.1. BLOCKING WAIT.. 27
5.2. PAGE TIMER... 27
5.3. SCHEDULEAFTER() ... 28
5.3. BEHAVIOR DURING SLEEP MODE... 29

CHAPTER 6. LEVELS, SCOPE AND LIFETIME...30
6.1. LEVELS ... 30
6.2. SCOPE .. 30
6.3. LIFETIME ... 30

CHAPTER 7. ACTIVITIES AND PAGES ...31
7.1. ACTIVITY SCRIPT .. 31

Usage ... 31
Home activity .. 31

7.2. PAGE SCRIPT... 31
Usage ... 31
Page label... 32

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 5

Home page ... 32
Jump to other activity .. 33
Multiple page jumps within activity... 33

CHAPTER 8. EXTENDERS..34
8.1. CF.EXTENDER[].. 34
8.2. SERIAL PORTS ... 34
8.3. INPUTS .. 36
8.4. RELAYS... 36
8.5. LIMITATIONS .. 37

CHAPTER 9. NETWORK CONNECTIONS...38
CHAPTER 10. CREATING PRONTOSCRIPT MODULES ..41
CHAPTER 11. EXCEPTIONAL SCENARIOS ...43

11.1. OUT OF MEMORY .. 43
11.2. NESTED SCRIPTING... 43
11.3. INFINITE SCRIPTS .. 43
11.4. INVALID ARGUMENTS ... 43
11.5. SCRIPT EXCEPTIONS... 43

CHAPTER 12. DEBUGGING YOUR SCRIPT...45
12.1. DEBUG WIDGET .. 45
12.2. SYSTEM.PRINT() ... 46

APPENDIX A: PRONTOSCRIPT CLASSES DESCRIPTION (PRONTOSCRIPT API)...47
A.1. ACTIVITY CLASS.. 48

Description.. 48
Instance properties.. 48

label ...48
tag ..48

Class methods .. 48
scheduleAfter() ...48

Instance methods.. 48
page() ...48
widget()..48

A.2. CF CLASS.. 49
Description.. 49
Class properties.. 49

extender[] ...49
Class methods .. 49

activity()...49
page() ...49
widget()..49

A.3. DIAGNOSTICS CLASS ... 50
Description.. 50
Class properties.. 50
Class methods .. 50

log() ...50
A.4. EXTENDER CLASS ... 50

Description.. 50
Instance properties.. 50

input[] ..50
relay[]...50
serial[] ..50

Instance methods.. 50
A.5. GUI CLASS .. 51

Description.. 51
Class properties.. 51
Class methods .. 51

getDisplayDate() ...51
getDisplayTime() ..51
updateScreen() ..51
widget()..51

A.6. IMAGE CLASS ... 51
Description.. 51

ProntoScript Developer’s Guide

Page 6 ProntoScript Developer’s Guide Version 1.0

Instance properties.. 51
Instance methods.. 51

A.7. INPUT CLASS .. 52
Description.. 52
Instance properties.. 52

onData..52
onError...52
onTimeout ..52

Callback functions ... 52
onInputDataCallback...52
onInputErrorCallback..52
onInputTimeoutCallback...52

Instance methods.. 53
get()..53
match() ...53
wait()..53

A.8. PAGE CLASS .. 54
Description.. 54
Instance properties.. 54

label ...54
repeatInterval..54
tag ..54

Instance methods.. 54
widget()..54

A.9. RELAY CLASS ... 55
Description.. 55
Instance properties.. 55
Instance methods.. 55

get()..55
set() ..55
toggle() ...55

A.10. SERIAL CLASS .. 56
Description.. 56
Instance properties.. 56

bitrate ...56
databits ...56
onData..56
onError...56
onTimeout ..56
parity..56
stopbits ...56

Callback functions ... 57
onSerialDataCallback..57
onSerialErrorCallback...57
onSerialTimeoutCallback..57

Instance methods.. 57
match() ...57
receive() ...57
send() ...57

A.11. SYSTEM CLASS... 58
Description.. 58
Class properties.. 58
Class methods .. 58

delay() ..58
getGlobal() ...58
getFirmwareVersion() ...58
print() ...58
setGlobal() ..58

A.12. TCPSOCKET CLASS.. 59
Description.. 59
Class constructor .. 59

TCPSocket() ...59
Instance properties.. 59

connected ...59
onClose ..59
onConnect ..59
onData..59
onIOError...59

Callback functions ... 59

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 7

onTCPSocketCloseCallback..59
onTCPSocketConnectCallback..59
onTCPSocketDataCallback ...59
onTCPSocketErrorCallback...59

Instance methods.. 60
connect() ..60
close() ..60
write() ..60
read()..60

A.13. WIDGET CLASS... 61
Description.. 61
Instance properties.. 61

height ...61
label ...61
left..61
onHold ...61
onHoldInterval..61
onRelease ...61
tag ..62
top..62
visible...62
width ..62

Instance methods.. 63
executeActions() ...63
getImage() ..63
setImage()...63

APPENDIX B: PREDEFINED TAGS ...64
APPENDIX C: PRONTO FONT ..65
FURTHER READING ...67
GLOSSARY..68

ProntoScript Developer’s Guide

Page 8 ProntoScript Developer’s Guide Version 1.0

Chapter 1. Introduction

1.1. Why ProntoScript?
At Philips we took up the challenge to add 2-way communication and dynamic UI's to the Pronto system,
to bring it to an ever higher level of home automation sophistication.
We wanted a system that:

- has easy to use plug-and-play modules for the custom installer
- is powerful and flexible to the 2-way module programmer
- is easy to learn

We concluded that JavaScript, a popular and proven scripting language, is the ideal solution. Integrated
into ProntoEdit Professional, it unlocks the full power of the new WiFi enabled Prontos and Extenders:

1. JavaScript is a modern, very high level programming language, allowing rapid development of rich
end user applications

2. The web offers plenty of references and solutions to general programming challenges in JavaScript,
more than any other language.

3. Encapsulated into a single Pronto Activity (Device) that can be merged into projects, the
complexity of the code can be shielded off completely from the custom installer. He just wants to
plug in a 2-way module for controlling his selected equipment.
A few standardized hidden pages with instructions and parameters allow him to configure the
module to operate seamlessly within his specific system.

Let's begin our journey with the classic "Hello, world!" program and see how to write this in
ProntoScript.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 9

1.2. A simple button script
Example 1.1. Simple button script source code

label = "Hello, world!";

By specifying the above ProntoScript for a button, its label will be changed to the famous greeting
message at the moment we press the button.

To try out this example:

• Open ProntoEdit Professional 1.1 or above
• Create a new configuration (ctrl-N)
• Open the home page and add a button to it (Alt-B)
• In the Button Properties, in the actions tab:

a. Press the 'PS' toolbar icon
b. Add the ProntoScript code as shown

• Download to the Pronto (ctrl-D)
• On the Pronto, press the button you created once

ProntoScript Developer’s Guide

Page 10 ProntoScript Developer’s Guide Version 1.0

1.3. ProntoScript features
The main features of ProntoScript are:

• ProntoScript is based on JavaScript 1.6
• The ProntoScript API exposes a set of objects that represent the Pronto System, the Graphical

User Interface and the Extenders.
• ProntoScript is embedded in the UI of the ProntoEdit Professional, facilitating writing and testing

custom code for the Pronto.
• ProntoScript based 2-way modules can be integrated into any new or existing Pronto

configuration project by means of the merge feature.

ProntoScript is based on the popular JavaScript scripting language, as used in Internet web browsers. In
fact, the core ProntoScript language is largely compatible with ECMAScript-3, as present in popular web
browsers such as Microsoft's Internet Explorer, or Mozilla Corporation's Firefox.
Think of any programming challenge you faced in the past with languages like C, Pascal, C++: with
JavaScript (ProntoScript) you'll be able to handle it too, but most probably with less lines of code (and
less hassle). This is illustrated with the examples in the following chapters.

JavaScript has a top notch arsenal of powerful tools for data processing, so much needed to write state-
of-the-art 2-way communication drivers for a 2-way controller like Pronto.

Most RS-232 and TCP based protocols are ASCII based, some of them XML based. JavaScript provides
two powerful tools for tackling those: regular expressions and ECMAScript for XML (E4X).

Regular expressions
Regular expressions allow you to take any kind of data stream input and filter it for the information that
you need: either to update the display or know the exact 'state' of the equipment you are communicating
with.

Example for a volume change response of an A/V receiver:

MV80<CR>
or in JavaScript:

var response = "MV80\r";

To filter out the integer value 80 without relying on the fact that it is exactly 2 characters starting at the
position 3 we would write:

var volume = parseInt(response.match(/\d{2,}/)[0]);

With this one line of code, volume will hold the correct volume value even if the response would
(hypothetically) be: "%^&\r MV#80\r"

This would not be possible with a simple substring operation.

Regular expressions, although a bit cryptic, are really great for Pronto communication jobs. In a later
chapter we will go into great detail with more real live examples for getting the most out of them.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 11

E4X
E4X is a recent addition to JavaScript to reference the increasing amount of internet data that is
presented in XML format. If your Custom Install equipment communicates with XML, then parsing that
data becomes an order of magnitude easier with E4X than it would be with classic regular expressions.

Example: A windows Sideshow gadget transmits these song data in XML format:

var incomingdata =
<body>
 <content id="200" title="Now Playing" bg="50" bgfit="s" menuid="1000">
 <txt align="c" wrap="0">Title: Song Title</txt>

 <txt align="c" wrap="0">Artist: <clr rgb="F0F0F0">Song
Artist</clr></txt>

 <txt align="c" wrap="0" rgb="0F0F0F">00:00:00</txt>

 </content>
</body>;

Then these 5 lines of ProntoScript code will parse it and show the correct information on the screen of
the control panel:

var body = incomingdata; // <body>...
GUI.widget("PLAYING_STATUS").label = body.content.@title;
GUI.widget("SONG_TITLE").label = body.content.txt[0];
GUI.widget("ARTIST_NAME").label = body.content.txt[1];
GUI.widget("PROGRESS").label = body.content.txt[2];

The result could look like this:

The exact working of the statements used in the above script will be explained in the next chapters.

Now Playing

Artist

Song

Progress

Song Title

Song Artist

00:00:00

ProntoScript Developer’s Guide

Page 12 ProntoScript Developer’s Guide Version 1.0

Chapter 2. Core JavaScript
This chapter describes the Core JavaScript features, which ProntoScript shares with other JavaScript-
based environments, such as those found in web browsers.

2.1. Variables
The following examples tell you almost everything there is to know about variables in JavaScript:

var a = 10; // declare a and assign integer value 10
b = "Hello, world!"; // declare b and assign a string
 // (var is added implicitly)
b = 5; // JavaScript is untyped: b is converted
 // automatically to hold an integer.

If you like more details, please refer to the [Flanagan] book or the [Mozilla] website:
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Guide:Variables

Primitive types
JavaScript has 3 primitive types: numbers, strings (of text) and booleans, plus two trivial datatypes: null
and undefined .

Numbers
JavaScript does not distinguish between integers and floating points: all numbers are 64 bit floats.

Here are some examples of numeric literals:

var a = -10000; // integer literal
a = 0xff; // hexadecimal literal (decimal 255 :-)
a = 1.797e-308; // floating point literal (e can also be E)

Strings
A string is a sequence of Unicode characters. The first version of ProntoScript guarantees only ASCII
text, more to come.

JavaScript is very flexible and powerful in working with strings, by means of automatic concatenation and
number conversion. Some examples:

msg = "Hello, "+ "World!"; //msg -> "Hello, World!"
var a = 18;
hex_string = "0x" + a.toString(16); //hex_string -> "0x12"
var n = 12345.6789;
n.toFixed(0); //"12346"
n.toFixed(2); //"12345.68"
n.toExponential(2); //"1.23e+4"
n.toExponential(4); //"1.2346e+4"
n.toPrecision(3); //1.23e+4"
n.toPrecision(6); //"12345.7"

Some more examples on converting strings to numbers:

var division = "8" / "2"; //division is the number 4
parseInt("3 apples"); //returns to 3
parseFloat("3.14 kg"); //returns to 3.14
parseInt("0xFE"); //returns 254

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 13

Boolean
As in other programming languages, the boolean type is typically used for representing the result of
comparisons, e.g. in a if-then-else statement.

Again JavaScript is not strict in types here and converts easily between boolean, number and string when
appropriate: The boolean literals true and false are converted to 1 and 0 if used in a numeric context and
to the strings "true" and "false" in a string context.

This means that people used to classic C programming can opt for 1 & 0 to represent On/Off states of
custom install equipment. To advocate a consistent style however, we recommend using the boolean
type explicitly:

var hallWayLights = false; //Hall Way Light Load, default is OFF
...

hallWayLights = getLightStatus();
if (hallWayLights)
{
 // Hall Way Lights are ON
 ...
}
else
{
 // Hall Way Lights are OFF
 ...
}

Arrays

var a = new Array();
a[0] = 5;
a[1] = "Hi";
a[2] = {num:5, str:"Hi"}; //object with two properties num and str

var matrix = [[1,2,3],[4,5,6],[7,8,9]];

As in other languages, JavaScript offers arrays to store a collection of values into one object, which can
be retrieved by a numeric index. The index always starts at 0. Again, being untyped, the type of these
values does not need to be the same for the different values as you can see in the examples.

As a result, Array size allocation is dynamic.

var a = new Array(5);

This creates an array with 5 undefined elements, but it cannot know yet, how much memory to
reserve. Also, extra elements can be added by just assigning a value to it:

a[10] = "abc";

This extends the array to hold 11 elements.

2.2. Operators
JavaScripts operators are inspired by the syntax of the C - C++ - Java language syntax family.
For people with experience with these there are little surprises.
We will illustrate with a few examples.

ProntoScript Developer’s Guide

Page 14 ProntoScript Developer’s Guide Version 1.0

Arithmetic operators

a = 5 + 6; // a==11
a = 5 * 6; // a==30
a = 5 / 2; // a==2.5 !! all numbers are floats !!
a = parseInt(5/2); // a==2
a = 5 % 2; // a==1 (modulo, or remainder after division)
i = 1;
a = i++; // a==1 i==2
j = 1;
a = ++j; // a==2 j==2

Comparative operators
Javascript supports =, == and === operators. These can be confusing to novice programmers:

Assignment Operator =

a = 5

This is not a comparison operator, it is an assignment of the left-hand value to the right-hand variable.
Please note this common C-language pitfall, which is also possible in JavaScript.

a = getLightStatus() // returns boolean true or false
if (a = true)
{
 myLabel.label = "Lights are On"
}
else
{
 myLabel.label = "Lights are Off"
}

The programmer wanted to write:

if (a == true)

but forgot one '='. Instead of giving a warning or error, JavaScript will just assign true to a, and evaluate
the assignment as always true. So the test will always succeed, even if getLightStatus returned false.

Equality Operator ==
This is the operator that is used to compare for equality. Again (yes, we are repeating ourselves), since
JavaScript is untyped, it will use a "relaxed" form of "sameness" that allows type conversion

a = getLightStatus() // returns boolean true or false
if (a == "1")
{
 ...

This will give the result the programmer intended, as "1" and a will be converted to the number 1 and
then successfully compared.

In most cases, this relaxed comparison is what you want. If you really want to avoid the type conversion,
you should use the Identity operator

Identity Operator ===
True === "1" will evaluate to false as both are not identical because they are not of the same type.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 15

The most practical use is if you really want to distinguish between undefined (declared but never
assigned a value) and null (not a valid object)

var a = new Object;

myLabel.label = (a.b===undefined) // evaluates to true

a.b = null; //or a.b = someFunction() that returns null

myLabel.label = (a.b===undefined) //evaluates to false
myLabel.label = (a.b===null) //evaluates to true

Bitwise operators
Bitwise operators require integers, so JavaScript will implicitly convert numeric values to 32bit integers
before proceeding.

//Bitwise AND
0x1234 & 0x00FF // -> 0x0034: use typically for masking

//Bitwise OR
 0x02 | 0x8 | 0x10
//0000 0010 | 0000 0100 | 0001 0000 -> 0001 1010
//use to set bit field registers

//Bitwise NOT
~0x0f // -> 0xfffffff0 or -16

2.3. Statement blocks
Statement blocks or compound statements are formed by adding curly braces around a set of statements.
It allows you to add multiple statements in constructions where only one statement is allowed:

{
 a = 5;
 b = 6;
 c = a+b;
}

2.4. Control flow
For controlling the flow of program execution, JavaScript has the following set of constructs:

• if/else
• switch
• while and do/while loop
• for and for/in loop
• break and continue statements

if/else
if (expression)
 statement 1
else
 statement 2

The last two lines are optional here.

ProntoScript Developer’s Guide

Page 16 ProntoScript Developer’s Guide Version 1.0

if (counter > 5)
{
 // counter limit reached
 ...
}
else
{
 counter = counter + 1;
}

switch blocks
switch (expression) {
 statements
}

var dayName;
switch (dayNumber)
{
 case 0:
 dayName = "Sunday";
 break;
 case 1:
 dayName = "Monday";
 break;
 case 2:
 dayName = "Tuesday";
 break;
 case 3:
 dayName = "Wednesday";
 break;
 case 4:
 dayName = "Thursday";
 break;
 case 5:
 dayName = "Friday";
 break;
 case 6:
 dayName = "Saturday";
 break;
 default:
 dayName = "Unknown";
 break;
}

Note that the JavaScript version of the switch statement is more flexible than in classic languages: the
expressions used between the () and after case, can be of any form and type. They are evaluated and
compared at runtime. It also means that they execute less efficient than compile time versions of C, C++
and Java.

while loops
while (expression)
 statement

var i = 0;
while (i < 10) {
 i++;
 Diagnostics.log(i);
}

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 17

for loops
for (initialize ; test ; increment)
 statement

for (var i = 0; i < 10; i++) {
 Diagnostics.log(i);
}

for (variable in collection)
 statement

var messages = ["one", "two", "three"];
for (var i in messages) {
 Diagnostics.log(i);
}

break statement
The break statement causes the execution flow to exit the enclosing loop or switch statement.

2.5. Exceptions
Explicit exception handling is a proven technique to keep robust code simple and easy to maintain. You
do this by separating the code that references error cases from the regular flow of the application.

A relevant example is to reference the possible exception you get when executing a Pronto button
action list in an asynchronous timer callback. Only one action list can be executed at a time and it is
possible the user just pressed a button when the timer expired.

Activity.scheduleAfter(1000,timerTick);

function timerTick()
{
 try

{
 CF.widget("MY_BUTTON","MY_PAGE").executeActions();
 }

catch (e)
 {
 Diagnostics.log("System Busy executing actions");
 }
 finally

{
 Activity.scheduleAfter(1000,timerTick);
 }
}

2.6. Functions
function funcname([arg1 [,arg2 [..., argn]]]) {
 statements
}

In the scripting language JavaScript, functions serve a few purposes

• Define a chunk of functionality but don't execute it yet.
• Execute is at a later stage by calling the function.
• Encapsulate logic into organized, reusable blocks.
• Change the behavior of a particular execution by passing parameters (arguments) to it

ProntoScript Developer’s Guide

Page 18 ProntoScript Developer’s Guide Version 1.0

• Speed up execution as the function is compiled once, when it is defined: it does not need to be
recompiled.

• Advanced: allow to write (pseudo) classes for OO programming.
• Advanced: register the function reference as an asynchronous callback, to be executed by the

system at a later stage.

2.7. Objects
An object is a collection of named values, called properties. The ProntoScript API offers many useful
objects to the programmer

var myButton = GUI.widget("MY_BUTTON");
var myButtonText = myButton.label; // use the label property
 // of the button class

You can also define your own objects.
This is useful as objects allow you to better structure your code by encapsulation: grouping data and
functionality that logically belong together into a single object.

var myReceiver = new Object();
myReceiver.brand = "MyBrand";
myReceiver.model = "MyModel";
myReceiver.masterVolume = 60;
myReceiver.source = "DVD";
myReceiver.volumeUp = function() {this.masterVolume++;};
myReceiver.volumeUp();
myPanel.label = myReceiver.masterVolume; // shows 61

2.8. Regular Expressions
See chapter 11 in [Flanagan]. Also a lot of information and examples can be found on the internet.

2.9. Math object
The Math object gives access to a number of useful mathematical constants and functions.

Math.floor(2.5); // -> 2
Math.ceil(2.5); //-> 3

Math.abs(-3); //-> 3

Math.random(); //->(pseudo)random number between 0.0 and 1.0

Math.PI; // -> 3.141592653589793

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 19

Chapter 3. Widgets
In the editor a page is composed of a number of graphical objects, called widgets. These widgets can be
manipulated from a script to create a more dynamic user interface. The most obvious widgets are
buttons and panels, but also hard buttons are considered as widgets because they share a number of
properties with (soft) buttons.

All widgets have a tag, which is a unique identification string that is needed in order to get access to it
from a script. Imagine you created a new configuration file with one panel on the home page: by default,
it will display a white rectangle. Now, change its tag by putting the text "VOLUME" (without quotes) in
the ProntoScript Name field in the advanced tab of the property dialog for the panel:

WARNING: Often the tag or ProntoScript Name of a widget is confused with the label. Remember
that the tag is the invisible name of the widget and the label is the text that is displayed in the widget.

ProntoScript Developer’s Guide

Page 20 ProntoScript Developer’s Guide Version 1.0

In the page properties dialog of the Home page, go to the Advanced tab and in the Page Script input field,
put the following line:

This one line of code looks in the page for a widget with the tag "VOLUME". It finds our panel and stores
a reference to it in variable w.

Note that the tag is case sensitive, so "VOLUME", "Volume" and "volume" are considered different tags!
Therefore, try to be consistent when using uppercase and lowercase.

TIP: We propose the convention to use uppercase for tags and lowerCamelCase for variables.

Once you have a reference to a widget, you can manipulate its properties. The next paragraphs will
show you some exciting examples for the different widget types.

3.1. Panels
The simplest widget type is a panel. Panels are a placeholder for a text and/or an image. Until now you
used it to display a text somewhere on a page, or to put some nice graphics on the background. Now,
with ProntoScript, the panels become dynamic. They can now show the state of the system, just like the
special widgets, called System Items that you are used to seeing on the system page. For example the
battery and WiFi widgets show a different image depending on an internal variable. The Activity Name
widget shows the name of the current activity but sometimes also shows strings like "Connecting…" or
"Command failed". Now you can do the same! Let's guide you through some examples.

Change the label
The label can be used for example to show the amplifier volume, the current tuner frequency or the
currently playing song title.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 21

With the above page script, we retrieved a reference, w, to a panel with the tag "VOLUME". Now we
want to show a real dynamic value on it. Let's add some code to the page script to create a variable to
contain this value:

var w = widget("VOLUME");
var volume = 0;
w.label = volume;

When you download this to your control panel you will see that when the page is displayed, the panel
will show "0" immediately. This is because the page script is executed already before the page is really
displayed. So the labels of all widgets on a page can be properly initialized in the page script of that page.

Note that the volume, which is an integer number, is automatically converted to a string when assigning
it to the label property of the widget variable w.

Now, let's change the volume. In the Home Properties, go to the Hard Buttons tab and select the vol+
button. Unselect the "Use System Page Actions" checkbox. Then click on the ProntoScript icon to show
the script input field. Add the following code:

This little script increments our volume variable and updates the label of our volume panel with the
new value. Note that we do not need to declare volume and w again in the button. Variables that are
declared in the page script can be accessed from all the button scripts on that page.

In the same way, add the following code to the vol- button:

volume--;
w.label = volume;

Now download this to the control panel and play with the vol+ and vol- buttons. You will see that the
value displayed in the panel will count upwards and downwards accordingly. Was that easy or not?

Change the position

ProntoScript Developer’s Guide

Page 22 ProntoScript Developer’s Guide Version 1.0

It is just as easy to change the position of the panel. Just change the value of the properties top and
left. As an example, put the following code to the cursor arrow keys:

Cursor up:

w.top -= 10;

Cursor down:

w.top += 10;

Cursor left:

w.left -= 10;

Cursor right:

w.left += 10;

Download to the control panel and play with the cursor keys and see the volume walk around the
screen. Confirm that you can move the panel completely off the screen.

Hide and show
You can hide and show the panel as you wish. The panel has a property called visible. When writing
true or false to it, you are directly in control of its visibility. In our example, put the following script
in the ok hard button:

w.visible = !w.visible;

The not (!) operator negates the value that comes after it. Can you predict what will happen when you
press the ok button when you download this to the control panel?

Change the image
When you want to have a panel with dynamic graphics, you need to do some preparation. First, you
need to collect the images you want to display and resize them to equal the panel size. Create a separate,
hidden page in the same activity and attach each image to a separate panel in this activity. Give the
hidden page a label and a tag, for example "RESOURCES". Give the panels tags like "VOLUME0",
"VOLUME1", etc.

Now we can access those images:

function showVolume()
{
 w.label = volume;
 var v = widget("VOLUME"+volume, "RESOURCES");
 if(v)
 w.setImage(v.getImage());
}

This code copies the image of one of our resource panels to our volume panel. Especially note the
validity check on v: if the widget is not found, v will not be a valid widget reference and v.getImage()
would throw an exception causing the script to be aborted. The if(v) makes sure the image is only
copied when v is not null.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 23

In our example configuration above, in the button scripts for vol+ and vol-, replace the lines with:

w.label = volume;

by:

showVolume();

3.2. Buttons
Buttons are put on a page to create a clickable area. So, you created a button, attached two images to
indicate its released and pressed state and gave it a label to be displayed on it. And, of course, you
attached actions to it. This is as far as you could go with the traditional Pronto buttons. Now let's see
what we can do with it that we couldn't do before.

First, we give it a tag, for example "MY_BUTTON" and look it up in the page script:

var w = widget("MY_BUTTON");

Toggle button
A toggle button is a button that can show two (or more) states. For example, in your "Watch TV"
activity, you want to remember if you entered EPG mode or not.
First create an activity variable to hold this state by declaring it in the activity script:

Then when the page with our button is displayed, we should initialize it properly in the page script:

var w = widget("MY_BUTTON");
w.label = epgOn ? "On" : "Off";

ProntoScript Developer’s Guide

Page 24 ProntoScript Developer’s Guide Version 1.0

This locates our button and then gives it the label "On" when epgOn equals true, and "Off" otherwise.
Now in our button script we put some code to toggle the state and show it:

epgOn = !epgOn;
label = epgOn ? "On" : "Off";

Note that we do not need to use the reference w here to get to the label because we are already inside
the scope of our button object. For more information on button scope, refer to section 6.2.

Info popup
Suppose you want a popup window to be displayed for as long as you press a button? This can be done
by defining an onRelease function. Create a panel with the desired image and text and label it
"INFO". In the page script, get a reference to the panel and make it invisible by default:

var info = widget("INFO");
info.visible = false;

Then, let's program the GUIDE hard button with a little script to show the info panel when it is pressed:

info.visible = true;
onRelease = function()
{
 info.visible = false;
};

While-pressed counter
If you want an action to be repeated for as long as a button is pressed, you can define an onHold
function in the button script. Also set the onHoldInterval property to the number of milliseconds
between two repeats:

var counter = 0;
onHold = function() {
 counter++;
 label = counter + " seconds";
};
onHoldInterval = 1000; // msec

Download this to the control panel. Then, press the button and keep it pressed. Do you see the label
counting the seconds? What happens after 30 seconds? It will stop counting! This is because of a safety
mechanism built into the Pronto software. If it detects a button being pressed (stuck) for more than 30
seconds it stops the associated action.

3.3. Hard buttons
The hard buttons are different from the buttons described above in the sense that they do not have any
graphical properties like label, image, visible, etc. What you can do however is to define some onHold
or onRelease functionality for them. In order to get access to the hard buttons, some predefined tags
are available. See " Appendix B: Predefined tags" for the full list.

3.4. Firm keys
Firm keys are the five hard buttons on the bottom of the LCD display with the corresponding buttons
right above them. They have an image, a label, position etc. just like other buttons, but they are special.
The editor does not allow you to define a tag for them. Instead, you can get access to them using the
predefined tags "PS_FIRM1" etc.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 25

In the editor you can only define the firm key behavior on activity level, so normally the firm keys are the
same for all pages in one activity. Scripting allows you however to make them look different on each
page by changing their labels or even their images or position in the page script:

var firm1 = GUI.widget("PS_FIRM1");
firm1.label = "Blabla";
function onFirm1()
{
 ... // put here your firm key code
}

And then put the following script in the firm key on activity level:

onFirm1();

For an extensive list of all the Widget properties and methods, please refer to Appendix A.

ProntoScript Developer’s Guide

Page 26 ProntoScript Developer’s Guide Version 1.0

Chapter 4. Action Lists
One thing all widgets except panels have in common is that you can define a list of actions for them in
the editor. This includes sending infrared codes, performing page jumps, playing of sounds, etc.: a lot of
interesting stuff you also might want to do from ProntoScript. That's why we added the executeActions()
method to widgets.

For example, we can create a button that sends the infrared codes only when the button is pressed for
at least one second by putting the following code in its script:

onHold = function()
{
 executeActions();
};
onHoldInterval = 1000; // msec

This example first defines an onHold function that invokes the action list. This function then is
scheduled after one second.
Another example is our EPG toggle button that sends different infrared codes to enter and exit EPG
mode. For this, generate two buttons with the different infrared codes, tag them "EPG_ON" and
"EPG_OFF" and put them on a separate page tagged "IRCODES". Then adjust the toggle button script
to do the trick:

epgOn = !epgOn;
label = epgOn ? "On" : "Off";
page("IRCODES").widget(epgOn ? "EPG_ON" : "EPG_OFF").executeActions();

Attention point:
Action lists can not be executed in parallel. This means that when a script calls the executeActions()
method while an action list is already being executed currently, an exception will be thrown. When the
calling script absolutely wants the action list to be executed, it is advised to schedule a new
executeActions() in the handling of this exception. See example in “2.5. Exceptions”.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 27

Chapter 5. Timers
ProntoScript provides three mechanisms which can be used for delaying execution of scripts: fully
blocking waits with the delay() method, page timers and the scheduleAfter() method.

5.1. Blocking wait
Sometimes you need some time between two script statements. The System.delay() function can
be used for that. Just pass the desired number of milliseconds as a parameter. For example, you want a
button that turns on the hallway light and automatically turns it off after 10 minutes. You can do this with
the following button script:

page("IRCODES").widget("HALL_LIGHTS_ON").executeActions();
System.delay(10*60*1000); // msec
page("IRCODES").widget("HALL_LIGHTS_OFF").executeActions();

Download this to your panel, press the button and sit back and wait… This should block the control
panel for 10 minutes, so this should be enough for a coffee break. Note that the screen of the control
panel looks frozen. Also the control panel does not respond to any key presses. So when someone calls
on the phone there is no way to mute the stereo… Just ask them to call back after 10 minutes. Or
maybe we should rewrite our script to be a bit more user friendly? Let's try the second timer
mechanism:

5.2. Page timer
The editor allows you to mark a page script as repetitive. This feature can be used to count down until it
is time to turn off the lights. First declare a counter in the activity script:

var hallLightsTimer = 0;

Then in the button script turn on the lights and start the timer by setting the counter. Let's program it
to 10 seconds instead of 10 minutes for quicker testing:

page("IRCODES").widget("HALL_LIGHTS_ON").executeActions();
hallLightsTimer = 10; // seconds

And finally define a page script to be called every second to decrement the counter and turn off the hall
lights if the counter reaches zero:

ProntoScript Developer’s Guide

Page 28 ProntoScript Developer’s Guide Version 1.0

Now try this on your control panel. Do you notice that the control panel is fully operational while the
timer is running? In fact, you don't even notice it. Except for the hall lights being on, you have no
indication that the page script in fact is activated every second. Maybe it is a good idea to show a little
icon somewhere on the screen to indicate that a timer is running. Or maybe after each decrement of the
counter update the button label with the remaining time:

hallLightsButton.label = hallLightsTimer + " sec";

This implementation using the page timer has a number of drawbacks:
• You normally want to put a lot of code in the page script but you probably don't want all of this

code to be repeated continuously.
• There is only one page timer. If you need multiple timers you will need to use the scheduleAfter()

function discussed in the next section.

5.3. scheduleAfter()
A more sophisticated way to reference our hall lights timing is to use the third timer mechanism:
scheduleAfter(). This method of the Activity class allows you, as the API reference states in
Appendix A: "to program a function to be executed once after a certain time". So we just need to define
a function to turn off the lights, and call scheduleAfter() to trigger it, as shown in the following
button script:

page("IRCODES").widget("HALL_LIGHTS_ON").executeActions();
function hallLightsOff()
{
 page("IRCODES").widget("HALL_LIGHTS_OFF").executeActions();
}
scheduleAfter(10*60*1000, hallLightsOff);

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 29

5.3. Behavior during sleep mode
When the control panel is asleep, all timers are stopped. This includes the page timer and the
scheduleAfter timer. When the control panel is woken up again, the timers are resumed.

There are two exceptions in which the screen of the control panel does not go to sleep:

• The control panel is put into the docking. While the control panel is powered there is no need to
save battery consumption.

• The control panel is connected to a PC with a USB cable. In this case the control panel cannot go
to sleep because it needs to respond to USB messages.

In these cases the screen of the control panel will be turned off, but the timers keep running as expected.

You can also configure the screen to be always on. To do this, enter settings by pressing and holding the
settings icon for three seconds. Then on the second tab, increase the value below the text "Turn screen
off after:" until it displays "On".

ProntoScript Developer’s Guide

Page 30 ProntoScript Developer’s Guide Version 1.0

Chapter 6. Levels, scope and lifetime

6.1. Levels
A configuration file is a hierarchy of a number of activities or devices, each consisting of a number of
pages, that each in turn has a number of buttons and panels. The editor shows this hierarchy in its tree
view. You can attach scripts to all levels within this hierarchy: activity, page and button.

6.2. Scope
Now that we covered already numerous code 'snippets' and dropped a word or two on scope it is time
to cover this subject in more detail.

Local scope
When you declare a function or variable in a button script, it will be known only in that script. That is
called local scope.

Page scope
But when you declare something in a page script, it will be known in all the button scripts on that page.
So you can declare a variable like epgOn in a page script and use it in a button script on that page. The
other pages however cannot access this variable in any way: that is page scope.

Activity scope
Everything declared in an activity script is known in all the page scripts and button scripts of that activity.
So if you declare a function like the onFirm1() on activity level you can call it from the firm key scripts
on that activity but also from one of the page scripts of that activity as well as from any button script on
any one of the pages of that activity. But the function cannot be accessed from other activities and when
you switch to another activity, all declarations and definitions are destroyed.

The advantage of this mechanism is that if you have two activities, they can use the same names in their
scripts without interfering with each other. But sometimes you want to explicitly share information with
other activities, or store some persistent data so that you can restore the state of the activity after
switching to another activity and back. That's why we also have:

System globals
There is a special facility for information that needs to be used by multiple activities. You can store a
string globally using the System.setGlobal() method and retrieve it with the
System.getGlobal() method.

6.3. Lifetime
The lifetime of a script object is the time that the function, variable or class remains defined after its
declaration. This is defined by the time that the scope, in which the object is declared, remains active.
In ProntoScript, all scopes remain active as long as the activity remains active. This means that variables
set in one page will still have their values retained when coming back to that page.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 31

Chapter 7. Activities and Pages
We already gave some examples of activity and page scripts. Now it is time to discuss those two script
types in more detail.

7.1. Activity script
The activity script is executed when you 'enter the activity'. This means when a page of the activity is
about to be displayed, and the previous page was not part of this activity.
The activity script is executed just after the activity is initialized, but before the page script is executed.
The page objects are not created yet. (so never use GUI.widget() on Activity level!)

Usage
The activity script can be used to initialize an activity, to define objects, functions and variables that need
to be used on all its page scripts. It also typically defines any parameters of the activity.
If functionality needs to be executed only the first time the activity is entered, a global variable can be
declared to check whether the activity script is already executed or not. For example, you have an
activity "Listen to iPod" and you want to initialize it the first time you connect to it:

if (System.getGlobal("ListenIPod.Initialised") == null)
{
 ... // perform first time initialisation
 System.setGlobal("ListenIPod.Initialised", "true");
}

Be aware that since the page objects are not created yet, it is not possible to show any feedback to the
user here. This should be done in the page script.

Home activity
A special activity is the Home activity, since it is the first activity that is selected after the control panel is
powered or after a configuration file download. The Home activity script should contain the definitions
needed in all the home page scripts. Besides that, it can also be used to initialize the global variables
stored in the System class.
Note: The editor does not allow renaming the Home activity? With ProntoScript you can (although we
do not recommend it). Just add this line to the Home activity script:

label = "Lobby";

7.2. Page script
The page script is executed just before a new page is going to be displayed. In fact, all the buttons and
panels on the page are created as specified in the configuration file by the editor. The only thing that has
not been done is to show them on the screen.

Usage
So now is the time to make some last-minute alterations! This means you can change the labels and
images of widgets to show the actual status. And you can hide any popup panels and other widgets that
should not be visible initially.
If you declared some general purpose functions in the activity script, you can use them here.
If you need some variables that need to be shared between different widgets on the page, you should
declare and initialize them here.

ProntoScript Developer’s Guide

Page 32 ProntoScript Developer’s Guide Version 1.0

Page label
In the editor you can define a label for every page. These labels could not be used before on the device.
Now you can! Let's animate the activity label and the page label. Put this in the activity script:

var orgLabel = label; // Save original activity label

function animateLabel()
{
 if(label == "")
 {
 label = orgLabel; // Restore original activity name
 }
 else
 {
 label = label.substring(1); // Remove the first character
 scheduleAfter(330, animateLabel); // Animate 3x per second
 }
}

function startAnimateLabel(pageLabel)
{
 label = orgLabel + " – " + pageLabel; // Combine the activity and page
label
 scheduleAfter(2000, animateLabel); // Start animating after 2 seconds
}

TIP: it is a good practice to use comments to make complex scripts more readable as shown in the
example above.

Now start the animation in the page script:

startAnimateLabel(label);

Home page
The home page is the first page of the Home activity. Since the home page is the first to be displayed
after power up of the control panel, you can put a custom splash screen here. Create a panel with a nice
background and a welcome message and tag it "SPLASH". Then, put the next code in the home page
script:

if (System.getGlobal("Home.Started") == null)
{
 scheduleAfter(3000, function() { widget("SPLASH").visible = false; });
 System.setGlobal("Home.Started", "true");
}
else
{
 widget("SPLASH").visible = false;
}

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 33

Jump to other activity
When an action list containing a page jump to a page of another activity is executed, the lifetime of the
current activity stops and the script is aborted. The execution of the action list however is not affected.

Multiple page jumps within activity
When an action list containing multiple page jumps is executed, each page script is executed when the
jump is done, and the next action in the action list is only executed after the page script has finished. This
has as consequence that this page script can not execute an action list, since one is already being
executed. An exception will be thrown. When the calling script absolutely wants the action list to be
executed, it is advised to schedule a new executeActions() in the handling of this exception. See example
in “2.5. Exceptions”.

ProntoScript Developer’s Guide

Page 34 ProntoScript Developer’s Guide Version 1.0

Chapter 8. Extenders
Now that you know how to create some scripts and to manipulate the widgets on the screen, it is time
to interface with your equipment. This chapter covers the devices that you hooked up onto your serial
extender(s); the next chapter will cover communicating to the rest of the world over the wireless
network.

8.1. CF.extender[]
How to use an extender in ProntoScript? The CF class has a member called extender[] which is an
array containing valid entries for all extenders that are configured in the editor.
Suppose you want to use an extender that you configured at as extender 0. Then the following line gets
a reference to the Extender object that corresponds to it:

var e = CF.extender[0];

If extender 0 is not defined, e will now have the value undefined, which is equal to null. If you want your
script to protect against this, you can do it as follows:

if(e == null)
{
 Diagnostics.log("Extender 0 is not defined");
}
else
{
 ... // put the rest of your code here
}

The Extender object that you have now, gives you access to the ports of the extender: the serial ports,
the power sense ports and the relay ports. It does this through its arrays: serial[], input[] and
relay[]. Since a serial extender has four serial ports, four inputs and four relays, the arrays each
contain four references to objects of type Serial, Input and Relay. Note that, although the ports are
numbered 1 to 4 on the extender and in the editor, all array elements start at index 0 in ProntoScript!
This is according JavaScript convention.

8.2. Serial ports
Suppose you hooked up a serial A/V receiver onto the first serial port of the extender. So let's get the
first serial port from the extender:

var s = e.serial[0];

If the extender is defined as a basic extender, it will have no serial ports and the entry will be null, so you
can check against that:

if(s == null)
{
 Diagnostics.log("Extender 0 is not a serial extender");
}
else
{
 ... // put the rest of your code here
}

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 35

Configuring the serial port
Now that we have the Serial object for the serial port that is connected to our receiver, we have to
make sure it is configured with the same serial communication settings that the receiver is expecting. For
example:

s.bitrate = 9600;
s.databits = 8;
s.parity = 0; // None
s.stopbits = 1;

These are in fact the default communication settings of the serial ports. But it is a good practice to
explicitly configure them.

Sending and receiving
Now that we configured the serial port we can send a command to it to turn our A/V receiver on:

s.send("PWON\r");

This sends the string "PWON" followed by a carriage return over the serial line.

With the receive function we can send a command and receive the response. This one line of code
requests the current master volume:

var volume = s.match("MV?\r","\r",250);

This first sends the string "MV?\r" to the A/V receiver and then captures the incoming data until a
carriage return is received. The last parameter makes sure the operation does not wait longer than 250
milliseconds for the response to be received.

Let's combine all above code snippets together in a button script that requests the volume and puts it on
its label:

var e = CF.extender[0];
if(e == null)
{
 Diagnostics.log("Extender 0 is not defined");
}
else
{
 var s = e.serial[0];
 if(s == null)
 {
 Diagnostics.log("Extender 0 is not a serial extender");
 }
 else
 {
 s.bitrate = 9600;
 s.databits = 8;
 s.parity = 0; // None
 s.stopbits = 1;
 label = s.match("MV?\r","\r",250);
 }
}

Asynchronous operation
The above script uses 'synchronous' serial communication. This means that the match function stops the
script, effectively blocking the control panel until the response is received. We already saw that blocking

ProntoScript Developer’s Guide

Page 36 ProntoScript Developer’s Guide Version 1.0

the control panel is generally not a good idea. The proper way to do this is to define a callback function
for the receiving of data:

s.onData = function(v){ label = v; };

Now the line:

s.match("MV?\r","\r",250);

will not block the control panel anymore. The script will finish, and when the response with the volume
is received from the A/V receiver, our little function is called which sets the label.
You can also define a callback functions for handling the timeout and other errors. The following lines
make sure a diagnostics message is logged when a timeout or another error occurs:

s.onTimeout = function(v){ Diagnostics.log("A/V receiver timeout"); }
s.onError = function(e){ Diagnostics.log("A/V receiver error " + e); }

8.3. Inputs
The power sense inputs of the extender are equally easy to operate. To get the first power sense input
of extender 0, just write:

var i = CF.extender[0].input[0];

Again, i will be null if the extender is defined as a basic extender, but let's assume you configured the
extender properly by now.

Getting the state
Now, imagine we want a panel on the page that should indicate the power state of a device. Let's tag it
"POWER_STATE" and add a little page script to inquire the state of the input:

var i = CF.extender[0].input[0];
var w = widget("POWER_STATE");
w.label = i.get() ? "high" : "low";

This requests the state of the input from the extender and then updates the panel with the text "high"
or "low" accordingly. When you configure the page script to be repeated, you will see the panel being
updated when the input changes.

var i = CF.extender[0].input[0];
var w = widget("POWER_STATE");
w.label = i.get() ? "high" : "low";

8.4. Relays
You can control an extender relay port as follows. First you get the corresponding Relay object:

var r = CF.extender[0].relay[0];

And then you can retrieve the current state with get() and change it with set() or toggle():

if(r.get() == false)
{
 r.set(true);
}

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 37

8.5. Limitations
When using the extenders you should be aware of the fact that one extender can do only one thing at
the same time. So for example, while you are doing a receive operation on one serial port, you cannot
ask it to send something on another port or toggle a relay or so. Also if you are implementing an
installation with multiple control panels, you will get an error if you try to access a port of an extender
that is currently processing a request for another control panel.

So try to write scripts that do not block the extenders for a long time. Suppose that your A/V receiver
sends serial data when its volume is changed and that you want to reference these 'unsolicited events' to
update the screen of the control panel accordingly. You could use the following script:

function PollAVReceiver(d)
{
 .../* parse d for data to be displayed */
 s.match("","\r",1000); // Collect data for one second
}
s.onData = PollAVReceiver;
PollAVReceiver(""); // Start polling

This will constantly read from the serial port and parse the received data to update the screen. But it will
also keep the extender locked continuously. Instead, you could also write:

function PollAVReceiver()
{
 d = s.match("","\r",0); // Synchronous read with timeout=0
 .../* parse d for data to be displayed */
 scheduleAfter(1000, PollAVReceiver); // Schedule next poll
};
PollAVReceiver (); // Start polling

Or simply put this in the page script with a repeat interval of one second:

d = s.match("","\r",0); // Synchronous read with timeout=0
.../* parse d for data to be displayed */

This is a better solution since now the extender will only be locked for a very short time every second.

ProntoScript Developer’s Guide

Page 38 ProntoScript Developer’s Guide Version 1.0

Chapter 9. Network connections
Another powerful feature of the Pronto is its ability to perform network communication via WiFi. The
ProntoScript programmer can make use of this feature to interface with other IP networked devices. A
network connection can be established using the TCPSocket class.

The following line creates a variable of type TCPSocket:

var socket = new TCPSocket(true);

Similar as for serial communication, network sockets can be used in a synchronous or asynchronous way.
The parameter 'true' above indicates synchronous, which means that the script will block during every
socket operation, while in the asynchronous case callback functions are called at the completion of each
operation.

Synchronous operation.
The first thing to do when setting up a network connection is to specify the destination:

socket.connect('google.com', 80, 3000);

This call tries to connect to the website "google.com", port 80. Instead of the name, also the ip
address can be given, for example: "192.168.42.110". When the destination is found within three
seconds, the script continues, otherwise an exception will be thrown. See section "2.5. Exceptions" on
handling exceptions, but let's first describe the case that everything goes well.
Once the connection is established, we can read and write to it. The following lines ask for the root
directory in http format. Then it stores the first 100 characters that are received during maximally 3
seconds.

socket.write("GET /; HTTP/1.0\r\n\r\n");
result = socket.read(100, 3000);

When we are finished, we should close the connection:

socket.close();

We can combine the above code snippets in one button script to show the result on the button label
when it is pressed:

var socket = new TCPSocket(true);
socket.connect('google.com', 80, 3000);
socket.write("GET /; HTTP/1.0\r\n");
label = socket.read(100, 3000);
socket.close();

Of course you should make sure you properly configured the wireless settings for the control panel in
the editor. Then, you can download this configuration to your control panel and test it.
When you press the button, you will notice that the script execution blocks the control panel while
setting up the connection and getting the data. In the next section we will show you how to avoid this.

Asynchronous operation.
When specifying false when constructing the TCPSocket, we get an asynchronous socket:

var socket = new TCPSocket(false);

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 39

The next line looks identical as in the synchronous case:

socket.connect('google.com', 80, 3000);

But now the connect() will return immediately and the script continues, although the connection is
not yet established. Therefore we cannot start writing to the socket, yet. So, the remainder of the script
should be done when the connection is ready: in the onConnect callback function:

socket.onConnect = function()
{
 write("GET /; HTTP/1.0\r\n");
};

So when the connection is established, the onConnect function is called which writes the request to
the socket. Note that within this socket function, we can call the write() function without prefixing it
with socket, because the socket scope is active. Refer to section "6.2. Scope" on scoping rules.
Then we want to read the response. But we cannot start reading yet, because no data is available yet and
we do not want to block the control panel to wait for data. This is triggered by the onData callback
function:

result = "";
socket.onData = function()
{
 result += read();
};

When data is available, the onData callback is triggered. This function can be triggered repeatedly, as
long as data is coming in. That's why the above example accumulates everything in the result variable.
Note that no count and no timeout are specified for the read function. It will return immediately with all
available data.
According to the http standard, the destination will close the socket when the document is completely
transferred. This will trigger the onClose callback function that can show the accumulated result in the
button label:

socket.onClose = function()
{
 label = result;
};

The combined script looks as follows:

var socket = new TCPSocket(false);
var result = "";
socket.onConnect = function()
{
 write("GET /; HTTP/1.0\r\n");
};
socket.onData = function()
{
 result += read();
};
socket.onClose = function()
{
 label = result;
};
socket.connect('google.com', 80, 3000);

ProntoScript Developer’s Guide

Page 40 ProntoScript Developer’s Guide Version 1.0

It is a little more extensive than the synchronous case, but it does not block the control panel.
One last thing we should add is some error handling. In case of an error during one of the socket
operations, the onIOError callback function is called, if defined:

socket.onIOError = function(e)
{
 label = "Socket error: " + e;
};

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 41

Chapter 10. Creating ProntoScript Modules
A ProntoScript module is an xcf with one activity containing a number of pages and scripts that control a
specific device. This activity should be self-contained. This means that the scripts should not refer to
widgets in other activities or on the system page.

Merging XCFs to import activities
When you want to use the specific device, you can include its activity in your configuration file by
merging it with the ProntoScript module via the "Merge Configuration" option in the editor. This will add
the activity at the bottom of the activity list.

Using hidden pages for easy configuration
Then the module probably needs to be configured. For example which extender should be used to
control the device, what ports are connected, buffer sizes, error levels, etc. The first hidden page should
be called "INSTRUCTIONS" and should contain help information to the custom installer. Next is a
page "PARAMETERS" with yellow fields (panels) to which configure the Pronto to communicate
properly to the device to be controlled. These pages should be made hidden, so that they are only visible
in the editor and not on the Pronto to the end user.

In an effort to standardize the custom installer experience with ProntoScript modules, we propose the
following template as a standard with the SDK. We strongly encourage you to make use of it

Note: ProntoScript scoping rules allow modules to be included more than once in a single project
without interfering with each other. An exception (by definition) is the use of Global variables. Therefore
it is advised to prefix the Global variable names with the Module name. The installer will typically change
this, making the string unique. You can of course ask him to do so explicitly in the INSTRUCTIONS page.

ProntoScript Developer’s Guide

Page 42 ProntoScript Developer’s Guide Version 1.0

The parameters can be retrieved from the PARAMETERS page and stored in variables in the activity
script when the module is started. For example:

var server_url = CF.widget("PARAMETER1", "PARAMETERS").label;
var ip_address = CF.widget("PARAMETER2", "PARAMETERS").label;
var port_nr = CF.widget("PARAMETER3", "PARAMETERS").label;
...

If you need more than four parameters, add another parameter pages with the same layout. Make sure
the tags and labels of the parameters on this new page are numbered correctly.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 43

Chapter 11. Exceptional scenarios

11.1. Out of memory
When a script runs out of memory, the script engine tries to free up memory with a process called
'garbage collecting'. This reorganizes the memory space allocated to the script engine in order to
recover chunks of memory that are not used anymore. If this process does not free up enough memory,
script execution will be halted and a diagnostic message will be logged. When the garbage collection
process takes more than one second, also a diagnostic message will be logged.

11.2. Nested scripting
Nested scripting is prohibited. When a script is triggered while the script engine is already executing
another script, it will be queued after the engine is finished. This also means that event functions will be
called after the current script is finished.

11.3. Infinite scripts
It is possible to create a script that takes a long time to execute and effectively blocks the control panel.
In order to enable the user to fix this situation a key combination can be pressed during the start-up of
the control panel that disables the script engine. The key combination to be used is: Backlight + Menu +
ChannelUp. It must be pressed continuously during the start-up animation and the please wait screen. A
diagnostic message will be logged to indicate the limited functionality available. The user can then use the
normal download procedure to download a corrected configuration file into the control panel. Another
reboot is required to start the script engine again.

11.4. Invalid arguments
When an invalid value is set to a class property, or when a class function is called with invalid or
insufficient parameters, a diagnostic message will be logged and the execution of the erroneous script
will be stopped.

11.5. Script Exceptions
When an abnormal situation is detected during script execution, a script exception is generated. This can
be any of the following:
1 Exception 2 Description
3 "Failed" 4 The operation failed, e.g. reading from an extender serial port timed out.
5 "Not Implemented" 6 A class property or method was used that is currently not implemented.
7 "Not Available" 8 A class property or method was used that is not available.
9 "Insufficient internal memory

available"
10 Not enough memory when reading from a TCP socket or setting a global

variable.
11 "Invalid name" 12 The name passed to System.getGlobal() or setGlobal() is not a proper

string.
13 "Expected a function" 14 The specified callback is not a function.
15 "Expected an integer" 16 The parameter passed is not an integer.
17 "Expected a positive integer" 18 The specified Page.repeatInterval is negative.
19 "No argument specified" 20 Not enough arguments are passed to the class method.
21 "Not enough arguments specified" 22 Not enough arguments are passed to the class method.
23 "Argument is not a string" 24 Socket.connect expects a string as host name.
25 "Argument is not a function" 26 Activity.scheduleAfter expects a function.
27 "Argument is not an integer

number"
28 A timeout must be an integer number.

29 "Argument is not a positive integer
numer"

30 A timeout or the number of bytes to receive must be larger than 0.

31 "Argument is not an image" 32 Widget.setImage() is called with an invalid argument.
33 "Argument is not a boolean" 34 Input.match() is called with an invalid argument.
35 "Limit of simultaneous timers

reached"
36 The maximum number of functions are already scheduleAftered

37 "Socket error" 38 A socket operation resulted in an error. E.g. a read() or write() failed.

ProntoScript Developer’s Guide

Page 44 ProntoScript Developer’s Guide Version 1.0

39 "Failed to connect" 40 Socket.connect() failed. Check your network settings.
41 "Maximum blocking read length

exceeded"
42 You tried to read more than 65536 bytes from a synchronous socket.

43 "Maximum read length exceeded" 44 You tried to read more than 512 bytes from a serial port.
45 "ActionList Error" 46 Error during executeActions().

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 45

Chapter 12. Debugging your script
There are a number of ways to help you debug your script in case it does not work as expected. Or it
does not work at all because of a typing mistake.

12.1. Debug widget
The first thing you can do is to create a debug widget on the page you want to debug. Create a panel
with the tag "_PS_DEBUG_". In the Dimensions tag, position it in the upper left corner and resize it to
full screen. In the Appearance tab, check the No Fill box to make it transparent so you can still see and
touch the other widgets on the page. Then in the Label tab, set the text alignment to bottom left.

Now, if an error occurs when compiling or executing your script, an appropriate error message will be
logged into this debug widget. It will indicate the offending script, the line number and a short description
of the error. Suppose we made a typo in our page script:

var e = CF.extender[0];

This will give the following output on the screen:

ProntoScript Developer’s Guide

Page 46 ProntoScript Developer’s Guide Version 1.0

12.2. System.print()
You can add messages yourself to the debug widget while the script is running. This is done with the
System.print() function. An example:

System.print("Starting page script");
var w = widget("WRONG_TAG");
System.print("Widget: " + w);
w.label = "Hello, world!";
System.print("Page script finished");

This will give the following output:

Note that you can pass any string to the System.print() function, but the text will be truncated to
99 characters.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 47

Appendix A: ProntoScript Classes Description (ProntoScript API)
The Maestro control panel scripting language provides a number of object classes that can be accessed
and provide access to the internals of the control panel. The next diagram shows an overview of the
classes:

PDWFK LQ�UHT� VWULQJ LQ�WHUP � VWULQJ LQ�WLP HRXW� LQW VWULQJ
UHFHLYH LQ�UHT� VWULQJ LQ�FRXQW� LQWLQ�WLP HRXW� LQW VWULQJ
VHQG LQ�GDWD� VWULQJ

ELWUDWH� LQW
GDWDELWV� LQW
RQ' DWD
RQ(UURU
RQ7LP HRXW
SDULW\ � LQW
VWRSELWV� LQW

6HULDO

SDJHLQ�WDJ3 � VWULQJ 3DJH
VFKHGXOH$IWHULQ�GXUDWLRQ� LQWLQ�RQ$IWHU LQ�LG� REMHFW ERRO
Z LGJHWLQ�WDJ: � VWULQJ LQ�WDJ3� VWULQJ : LGJHW

ODEHO� VWULQJ
WDJ� VWULQJ

$FWLYLW\

DFWLYLW\ LQ�WDJ$� VWULQJ $FWLYLW\
SDJHLQ�WDJ3 � VWULQJ LQ�WDJ$ � VWULQJ 3DJH
Z LGJHWLQ�WDJ: � VWULQJ LQ�WDJ3� VWULQJ LQ�WDJ$� VWULQJ : LGJHW

H[WHQGHU>@([WHQGHU

&)

JHW' LVSOD\ ' DWH VWULQJ
JHW' LVSOD\7LPH VWULQJ
XSGDWH6FUHHQ
ZLGJHWLQ�WDJ: � VWULQJ : LGJHW

* 8 ,

LQSXW>@,QSXW
UHOD\ >@5 HOD\
VHULDO>@6HULDO

([WHQGHU

JHW ERRO
P DWFK LQ�VWDWH� ERROLQ�WLPHRXW� LQW ERRO
Z DLWLQ�WLP HRXW� LQW ERRO

RQ' DWD
RQ(UURU
RQ7LP HRXW

,QSXW

JHW ERRO
VHWLQ�VWDWH� ERRO
WRJJOH

5 HOD\

ZLGJHWLQ�WDJ: � VWULQJ : LGJHW

ODEHO� VWULQJ
UHSHDW,QWHUYDO� LQW
WDJ� VWULQJ

3 DJH H[HFXWH$FWLRQV
JHW,PDJH LQ�LQGH[� LQW LP DJH
VHW,PDJH LQ�LP DJH LQ�LQGH[� LQW

KHLJKW� LQW
ODEHO� VWULQJ
OHIW� LQW
RQ+ROG
RQ+ROG,QWHUYDO� LQW
RQ5 HOHDVH
WDJ� VWULQJ
WRS� LQW
YLVLEOH� ERRO
ZLGWK� LQW

: LGJHW

GHOD\
JHW* OREDOLQ�QDPH� VWULQJ VWULQJ
JHW) LUP Z DUH9 HUVLRQ VWULQJ
SULQW
VHW* OREDOLQ�QDP H� VWULQJ LQ�YDOXH� VWULQJ

6 \ VWHP

ORJ LQ�WH[W� VWULQJ

' LDJQRVWLFV

FORVH LQ�WLP HRXW� LQW
FRQQHFWLQ�$ GGUHVV� VWULQJ LQ�3 RUW� LQWLQ�WLP HRXW� LQW
UHDGLQ�FRXQW� LQWLQ�WLP HRXW� LQW VWULQJ
ZULWH LQ�GDWD� VWULQJ

FRQQHFWHG� ERRO
RQ&RQQHFW
RQ&ORVH
RQ' DWD
RQ,2 (UURU
RQ7LPHRXW

7&36RFNHW

,PDJH

The following sections list the available script object classes in alphabetical order.

ProntoScript Developer’s Guide

Page 48 ProntoScript Developer’s Guide Version 1.0

A.1. Activity class

Description
This class represents a control panel activity as defined in the editor. An activity is in fact a collection of pages with common
hard key definitions.

Instance properties
label
Purpose : This is the text that is shown in the ActivityName status field when a page of the activity is displayed.
Read/Write : RW The label of all activites can be changed, but the change will only persist as long as

the current activity is active.
Value : String The text can be of any length but the number of characters displayed will depend on

the size of the activity status field widget.
Additional info : The activity name status widget displays the label of the current activity. This is initially the name that is

defined in the configuration file. By writing a value to the label property the displayed activity name can be
changed. When null is written to the label, the original name is restored.

Example : CF.activity().label = "Busy…"; // Show Busy instead of the activity name
CF.activity().label = null; // Show activity name again

tag
Purpose : The tag is the activity name within the script. It is used to find a specific activity in the configuration file.
Read/Write : R
Value : String When no tag is defined an empty string is returned
Additional info : -

Class methods
scheduleAfter()
Purpose : Program a function to be executed once after a certain time.
Parameters : duration Integer The duration after which the function should be executed in

milliseconds. Must be greater than 0.
 onAfter Function The function to be scheduled.
 id Anything Optional parameter. The id can have any type and is passed as a

parameter to the onAfter function to enable usage of a generic
event function.

Return : -
Exceptions : - Not enough arguments specified

- Argument is not an integer
- Argument is not a function
- Limit of simultaneous timers reached

Additional info : The function is only called if the activity is still active after the specified duration. Multiple functions can be
scheduled in parallel with different durations. The execution of the functions will be scheduled sequentially.
A maximum number of 10 scheduled functions are supported in parallel.
Note that all control panel timers are paused while the control panel is asleep, postponing all pending
function calls.

Instance methods
page()
Purpose : Find the page with tag tagP in the activity..
Parameters : tagP String The tag of the page to search for. May be empty, null or

omitted. May be a predefined tag.
Return : Page The class instance corresponding to the found page, or null if

no page found with the specified tag. If no tag is specified, the
current page is returned of the current activity.

Exceptions : - Argument is not a string
Additional info : See the Page Class chapter for a description of the return value.

Refer to the Predefined Tags section for the applicable predefined page tags.

widget()
Purpose : Search the activity for a widget in a specific page.
Parameters : tagW String The tag of the widget to search for as defined in the editor.
 tagP String The tag of the page in which to search. May be empty, null or

omitted. In that case the current page of the current activity is
searched for the widget.

Return : Widget The class instance corresponding to the found widget, or null if
not found.

Exceptions : - Not enough arguments specified
- Argument is not a string

Additional info : Refer to the Widget Class section for detailed information on the return type.
Refer to the Predefined Tags section for the applicable predefined page tags.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 49

A.2. CF class

Description
This class gives access to the configuration file of the control panel, containing all items programmed by the editor.

Class properties
extender[]
Purpose : Array that provides access to the extenders defined in the configuration file. The array has a fixed size of 16

elements. Each element matches the corresponding extender as configured in the editor.
Read/Write : R
Value : Extender An entry refers to a valid Extender class instance, or undefined if no extender with

that id is defined in the configuration file. Note that null and undefined are equal in
ProntoScript.

Additional info : Refer to the Extender Class section for an extensive description of its properties.
Example : // Locates extender 0 and checks if it is configured:

var e = CF.extender[0];
if (e == null)
 Diagnostics.log("Extender 0 not available");

Class methods
activity()
Purpose : Provide access to one of the activities that are defined in the configuration file.
Parameters : tagA String The tag to look for. May also be empty, null or omitted.
Return : Activity The first found activity object with the specified tag, or null if

no activity was found in the configuration file with that tag. If
no parameter is specified, or if an empty string is passed, the
current activity object is returned.

Exceptions : - Argument is not a string
Additional info : Refer to the Activity Class section for detailed information on the activity members.

Refer to the Predefined Tags section for the tags to be used for the home and system activity.
Example : CF.activity("DVD"): returns the activity tagged "DVD".

CF.activity(""): returns the current activity object.

page()
Purpose : Provide access to one of the pages in the configuration file.
Parameters : tagP String Tag name of the page to search for. If both tagA and tagP are

omitted, empty or null, the current page is returned of the
current activity. In this case tagA is ignored.

 tagA String Tag name of the activity in which to search. If omitted, empty
or null, the current activity is searched.

Return : Page A Page class instance corresponding to the first page found
with tag tagP in the activity with tag tagA.

Exceptions : - Argument is not a string
Additional info : Refer to the Page Class section for detailed information on the page class members.

Refer to the Predefined Tags section for the tags to be used for the home and system page.
Example : CF.page("2", "DVD"): returns the page with tag "2" from the activity tagged "DVD".

CF.page("Macros"): searches the current activity for the page tagged "Macros".
CF.page(): returns the current page.

widget()
Purpose : Searches the configuration file for a specific button, panel, hard key or firm key and returns the

corresponding Widget class instance.
Parameters : tagW String Tag name of the widget to search for.
 tagP String Tag name of the page that contains the widget. If both tagA and

tagP are omitted, empty or null, the current page is searched.
 tagA String Tag name of the activity that contains the page with the widget.

If omitted, empty or null, the current activity is searched.
Return : Widget Class instance corresponding to the first matching widget in the

specified page of the specified activity, or null if the widget is
not found.

Exceptions : - Argument is not a string
Additional info : The search order is not defined. Therefore it is not advisable to give the same tag to multiple activities, pages

or widgets.
Refer to the Widget Class section for detailed information on the page class members.
Refer to the Predefined Tags section for the tags to be used for the home and system page.

xamples : CF.widget("AllOn", "2", "DVD"): searches the widget tagged "AllOn" on the page with tag "2"
on the activity tagged "DVD".
CF.widget("On", "Macros"): returns the button tagged "On" on the macro page in the current
activity.

ProntoScript Developer’s Guide

Page 50 ProntoScript Developer’s Guide Version 1.0

A.3. Diagnostics class

Description
The diagnostics class is be used to log messages in the diagnostics list.. This list can be inspected by pressing and holding the
following buttons in the stated order: backlight button + menu + firm key #2. Each line of the diagnostics list can hold up to
80 characters, and the list can hold up to 200 lines. When a new message is logged, it is added on top of the list. When more
than 200 lines are stored, the oldest ones are discarded. When the same message is logged multiple times within one second,
it is logged only once.

Class properties
None

Class methods
log()
Purpose : Add a message to the diagnostics log.
Parameters : s String The message text to be displayed.
Return : -
Exceptions : -
Additional info : The message will be truncated to fit on one line of the diagnostics widget. The new message will be added

on top of the list.
Example : Diagnostics.log("extender " + i + " does not respond");

A.4. Extender class

Description
The Extender class provides an interface to a RF extender, including its input ports, serial ports and relay outputs. The
extender configuration is read from the configuration file, so in order to be able to control an extender from a script, it needs
to be properly defined in the editor. This means that it should be marked as selected in the Extender tab of the System
Properties of the configuration file.

Instance properties
input[]
Purpose : The input[] array contains the power sense inputs of an extender. Normally, a serial extender has 4 power

sense inputs. The inputs are numbered from 0 to 3. A wireless extender has no power sense inputs. This can
be checked by comparing the array elements with null.

Read/Write : R
Value : Input Instance of the specified extender input, or null if the extender is not defined as a

serial extender.
Additional info : -
Example : // Get input port 0 on extender 0:

 var p = CF.extender[0].input[0];

relay[]
Purpose : Array giving access to a specific extender relay port. A serial extender has 4 relay outputs numbered from 0

to 3. A wireless extender has no relay ports, so the array elements will be null.
Read/Write : R
Value : Relay Instance of the specified extender relay port, or null if the extender is not serial or the

port number is out of range.
Additional info : Refer to the Relay Class section for more details on how to control the extender relays.
Example : // Get relay port 0 on extender 0:

 var p = CF.extender[0].relay[0];

serial[]
Purpose : This array gives access to the serial port with the specified number of an extender. A serial extender has 4

serial ports numbered from 0 to 3. A wireless extender has no serial ports and the array elements will be
null.

Read/Write : R
Value : Serial Instance of the specified extender serial port, or null if the extender is not serial or the

port number is out of range.
Additional info : Refer to the Serial Class section for more details on the extender serial ports.
Example : // Get access to serial port 0 of extender 0:

 var p = CF.extender[0].serial[0];

Instance methods
None

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 51

A.5. GUI class

Description
Control the graphical user interface of the control panel and access the objects that are displayed on the screen.

Class properties
None

Class methods
getDisplayDate()
Purpose : Get the control panel date.
Parameters : -
Return : String Contains the date as shown in the Date status widget.
Exceptions : -
Additional info : -

getDisplayTime()
Purpose : Get the control panel time.
Parameters : -
Return : String Contains the time as shown in the Time status widget.
Exceptions : -
Additional info : -

updateScreen()
Purpose : Force a screen update.
Parameters : -
Return : -
Exceptions : -
Additional info : Because during script execution the screen is not updated, an explicit screen update can be enforced with

this function call. Script execution is temporarily stopped until the screen update is finished.

widget()
Purpose : Search for a widget that is currently displayed on the screen. This also includes firm keys and hard keys and

the widgets on the System page.
Parameters : tagW String The tag of the widget to search for as defined in the editor.
Return : Widget The class instance corresponding to the found widget, or null if

not found.
Exceptions : - No argument specified

- Argument is not a string
Additional info : Refer to the Widget Class section for detailed information on the return type.

A.6. Image class

Description
This class represents an image in the configuration file. It cannot be instantiated directly. It is used when retrieving the image
of a button, panel or firm key in order to copy it to another button, panel or firm key.
This can be useful when creating gallery pages with artwork widgets or when creating animated widgets with a changing image.

Instance properties
None

Instance methods
None

ProntoScript Developer’s Guide

Page 52 ProntoScript Developer’s Guide Version 1.0

A.7. Input class

Description
This class represents a power sense input port on a serial extender.

Instance properties
onData
Purpose : Define the callback function for extender input port data.
Read/Write : RW When assigned, the callback will remain defined as long as the current activity

remains active.
Value : OnInputDataCallback Set to null for synchronous (blocking) operation.
Additional info : -

onError
Purpose : Define the callback function for extender input port errors.
Read/Write : RW Persistent as long as the current activity remains active.
Value : onInputErrorCallback Set to a valid function or to null if no error handling is desired.
Additional info : In case of an erroneous match() or write() operation, the onError function is called.

onTimeout
Purpose : Define the callback function when a timeout occurs during an asynchronous match() or wait() operation.
Read/Write : RW Persistent as long as the current activity remains active.
Value : onInputTimeoutCallback
Additional info : -

Callback functions
The prototypes of the call back functions are listed below. In the cal back functions, you can use 'this' to refer to the scope of
the actual input object that is causing the call back.

onInputDataCallback
Purpose : Called when an asynchronous match() or wait() completes.
Parameters : state Boolean The state of the power sense input: true if high, false if low.
Additional info : -

onInputErrorCallback
Purpose : Called when an error occurs during an asynchronous get(), match() or wait() operation.
Parameters : e PanelError The error that occurred as an Error object
Example : // The error string can be retrieved by casting e to a string:

 System.print(e);
Additional info : -

onInputTimeoutCallback
Purpose : Called when a timeout occurs during an asynchronous match() or wait() operation.
Parameters : -
Additional info : -

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 53

Instance methods
Note that one extender can only reference one request at the same time. The below methods will fail and throw an
exception when the extender is busy with another request. Therefore avoid using long timeout values!

get()
Purpose : Get the value of the power sense input.
Parameters : -
Return : Boolean True if the input is high, false if the input is low.
Exceptions : - Failed (extender error)
Additional info : The get() is executed as a blocking call, i.e. script execution continues only after the extender has replied

with the requested power sense value.

match()
Purpose : Wait for the port state to match a specific state. The operation completes as soon as the port is in the

requested state or when the indicated time has passed.
Parameters : state Boolean The requested state to wait for.
 timeout Integer The maximum time in milliseconds to wait for the specified

state.
Return : Boolean True if port state changed in time, false otherwise.
Exceptions : - Not enough arguments specified

- Argument is not a positive integer number
- Failed (extender error)

Additional info : If no onData function is specified, the script execution is halted until the operation completes.
Otherwise, the script continues execution and the onData function is called when the operation completes. In
case of a timeout, the onTimeout callback function is invoked instead. Exceptions are passed to the onError
callback.

wait()
Purpose : Wait for an input port to change state. The operation completes as soon as the port state changes or when the

indicated time has passed.
Parameters : timeout Integer The maximal time in milliseconds to wait for the specified port

to change state.
Return : Boolean True if the port state was changed, or false if timeout.
Exceptions : - No argument specified

- Argument is not a positive integer number
- Failed (extender error)

Additional info : If no onData callback function is specified, script execution is halted until the operation completes.
Otherwise, the script continues execution and the specified onData function is called when the operation
completes. If a timeout occurs, the onTimeout function is called instead. The onError function is called in
case of an exception.

ProntoScript Developer’s Guide

Page 54 ProntoScript Developer’s Guide Version 1.0

A.8. Page class

Description
This class allows access to the properties of a page in the configuration file.

Instance properties
label
Purpose : The name of the page as defined in the editor.
Read/Write : R
Value : String
Additional info : The page name is not visible on the control panel, but it can be defined in the editor.

repeatInterval
Purpose : This member stores the time after which the page script is repeated.
Read/Write : RW The page repeat interval can only be set for the current page.
Value : Integer Page script repeat interval in milliseconds. If the value is zero, the page script is not

repeatedly executed.
Additional info : -

tag
Purpose : Get the tag of the page.
Read/Write : R
Value : String String containing the page tag.
Additional info : The tag is used to find the page in the configuration file.

Instance methods
widget()
Purpose : Searches the page for a specific button or panel and returns the corresponding Widget class instance.
Parameters : tagW String Tag name of the widget to search for.
Return : Widget Class instance corresponding to the first matching widget in the

page, or null if the widget is not found.
Exceptions : - Not enough arguments specified

- Argument is not a string
Additional info : Refer to the Widget Class section for detailed information on the page class members.
Examples : p.widget("RESULT"): searches the widget tagged "RESULT" on page p.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 55

A.9. Relay class

Description
A relay port of a serial extender can be controlled with this class type.

Instance properties
None.

Instance methods
get()
Purpose : Inspect the actual value of a relay output.
Parameters : -
Return : Boolean True if the relay is closed, false otherwise.
Exceptions : - Failed (extender error)
Additional info : The get() is executed as a blocking call, i.e. script execution continues only after the extender has replied

with the requested relay state.

set()
Purpose : Set a relay output in a specific state.
Parameters : state Boolean Set to true if the relay should be closed, false if it should be

open.
Return : -
Exceptions : - Failed (extender error)
Additional info : The set() is executed as a blocking call, i.e. script execution continues only after the extender has performed

the requested operation.

toggle()
Purpose : Change the relay output state. If the relay was closed, it is opened. If it was open, it is closed.
Parameters : -
Return : -
Exceptions : - Failed (extender error)
Additional info : The toggle() is executed as a blocking call, i.e. script execution continues only after the extender has

performed the requested operation.

ProntoScript Developer’s Guide

Page 56 ProntoScript Developer’s Guide Version 1.0

A.10. Serial class

Description
A serial port of an extender can be used to send or receive data. A serial port has its own input buffer on the extender. This
buffer accumulates incoming data until the control panel issues a receive() command. When receiving data on the serial port,
the received bytes will be removed from the input buffer, so that they will not be read twice. When sending data on the serial
port, its input buffer will be flushed.
Send and receive operations can be combined into one combined receive() command in order to support multiple control
panels querying for data.

Instance properties
bitrate
Purpose : Set the serial communication speed.
Read/Write : RW
Value : Integer Valid values are: 2400, 4800, 9600, 14400, 19200, 28800, 31250, 38400, 57600

and115200 bits per second.
Additional info : -

databits
Purpose : Set the number of data bits for the serial communication.
Read/Write : RW
Value : Integer Valid values are 7 and 8.
Additional info :

onData
Purpose : Define the function that is called when data is received after a successful call to receive() or match().
Read/Write : RW
Value : onSerialDataCallback Set to null for synchronous (blocking) operation.
Additional info : If an onData function is defined but onTimeout is null, then in case of a timeout the onData callback will be

called with the received data.

onError
Purpose : Define the function that is called when an error occurs during receive() or match().
Read/Write : RW
Value : onSerialErrorCallback Set to null if no error handling is desired.
Additional info : -

onTimeout
Purpose : Define the callback function when a timeout occurs during an asynchronous receive() or match().
Read/Write : RW Persistent as long as the current activity remains active.
Value : onSerialTimeoutCallback
Additional info : If omitted, the onData callback will be called with the received data.

parity
Purpose : Set the parity of the serial communication.

Read/Write : RW
Value : Integer Valid values are: 0 (none), 1 (odd) and 2 (even).
Additional info : -

stopbits
Purpose : Define he number of stop bits for the serial communication.
Read/Write : RW
Value : Integer Valid values are 1 and 2.
Additional info : -

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 57

Callback functions
The prototypes of the call back functions are as follows. In the call back functions you can use 'this' to refer to the scope of
the Serial object that is causing the call back.

onSerialDataCallback
Purpose : Called when an asynchronous receive() or match() completes successfully.
Parameters : s String The data that was received on the serial port.
Additional info : This string can contain binary data.

Use s.length to get the number of bytes received.

onSerialErrorCallback
Purpose : Called when an error occurs during an asynchronous receive() or match().
Parameters : e PanelError An instance of the PanelError class for the error that occurred.
Example : The error string can be retrieved by casting e to a string:

System.print(e);
Additional info : -

onSerialTimeoutCallback
Purpose : Called when a timeout occurs.
Parameters : s String The partial data that was received on the serial port.
Additional info : This string can contain binary data. Use s.length to get the number of bytes received.

Instance methods
Note that one extender can only reference one request at the same time. The methods below will fail and throw an
exception when the extender is busy with another request, therefore, avoid using long timeout values!

match()
Purpose : First transmit an optional string on the serial port to query for data and then start receiving on the same port.
Parameters : s String String to be transmitted, may be null or empty.
 terminator String The terminator string to wait for.
 timeout Integer The maximal time in milliseconds to wait for the serial data to

arrive.
Return : String The received data including the terminator string, or an empty

string in case of asynchronous operation.
Exceptions : - Argument is not a string

- Argument is not a positive integer number
- Failed (extender error)

Additional info : The operation is complete if the specified terminator string is received or until timeout milliseconds have
passed. In the last case the currently received data will be returned.
If no onData function is specified, the script execution is halted until the operation completes and the
received data is returned. Otherwise, the script continues execution and the specified onData function is
called when the operation completes.

receive()
Purpose : First transmit an optional string on the serial port to query for data and then start receiving on the same port.
Parameters : s String String to be transmitted, may be null or empty.
 count Integer The number of bytes to receive.
 Timeout Integer The maximal time in milliseconds to wait for the serial data to

arrive.
Return : String The received data, or an empty string in case of asynchronous

operation. Can contain binary data.
Exceptions : - Argument is not a positive integer number

- Failed (extender error)
Additional info : The operation is complete if count bytes are received or until timeout milliseconds have passed. In the last

case less than count bytes will be returned.
If no onData function is specified, the script execution is halted until the operation completes and the
received data is returned. Otherwise, the script continues execution and the specified onData function is
called when the operation completes.

send()
Purpose : To transmit data on the serial port using the communication settings as specified in the above data members.
Parameters : s String The data to be transmitted. May contain binary data. Maximal

length is 512 bytes.
Return : -
Exceptions : - Not enough arguments specified

- Argument is not a string
- Failed (extender error)

Additional info : The send is executed as a synchronous (blocking) operation. Script execution is halted until the extender
replies that the requested operation is completed.

ProntoScript Developer’s Guide

Page 58 ProntoScript Developer’s Guide Version 1.0

A.11. System class

Description
The system class gives access to some general system level functionality. Furthermore it manages global information that
needs to be shared between different activities. This information is stored as a list of name-value string pairs. The string values
can contain binary data. The length is restricted by the available amount of memory.

Class properties
None

Class methods
delay()
Purpose : Wait for a specific time. This blocks script execution during the specified time.
Parameters : duration Integer Duration of the delay in milliseconds.
Return : -
Exceptions : - Not enough arguments specified

- Argument is not an integer
Additional info : Note that the screen contents will not be refreshed during a delay. If this is desired, use scheduleAfter

instead.

getGlobal()
Purpose : Retrieve a string value stored in the global variables list.
Parameters : name String The name of the global variable to find.
Return : String The value of the global variable, or null if the name is not

found.
Exceptions : - Not enough arguments specified

- Invalid name
Additional info : -

getFirmwareVersion()
Purpose : Show the control panel firmware version.
Parameters : -
Return : String Control panel firmware version, e.g. "TSU9600 V1.1"
Exceptions : -
Additional info : -

print()
Purpose : Display a debug message on the debug output panel.
Parameters : s String Text to be displayed. This text is appended to the label of the

debug window. Maximum length: 99 characters. If longer, will
be truncated.

Return : -
Exceptions : -
Additional info : The debug panel is a panel or button tagged "_PS_DEBUG_". When defining this panel in the editor, make

sure it has the text alignment set to bottom left, so that the newly added text always is visible.
Use "\n" to insert line breaks in the text output.

setGlobal()
Purpose : Store a string item in the global variables list.
Parameters : name String The name under which to store the string value.
 value String The string value to store. May contain binary data. The current

value associated with the given name, if any, is overwritten. If
the new value is null, empty or omitted, the current string item
with the specified name is removed.

Return : -
Exceptions : - No argument specified

- Argument is an invalid name
- Insufficient internal memory available

Additional info : -

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 59

A.12. TCPSocket class

Description
A network socket can be created to establish a TCP connection over a wireless network.

Class constructor
TCPSocket()
Purpose : Create a new TCPSocket instance.
Parameters : Blocking Boolean Indicates if the new socket should be blocking (true) or not

(false).
Return : TCPSocket A new TCPSocket class instance.
Exceptions : -
Additional info : When true, creates a synchronous (blocking) socket, i.e. the connect() and read() functions work

synchronous, they will block until the operation is finished. If blocking is false (or omitted), the
asynchronous implementation with callback functions will be used.

Instance properties
connected
Purpose : Check the connection state of the socket.
Read/Write : R
Value : Boolean True if connected, false if not.
Additional info : Set to true as soon as the connection is established.

onClose
Purpose : Define the asynchronous socket close callback function.
Read/Write : RW
Value : onTCPSocketCloseCallback Set to null if no notification is required.
Additional info : Used to detect the end of a network transfer or that the socket is closed by the destination.

onConnect
Purpose : Define the asynchronous socket connect callback function.
Read/Write : RW
Value : onTCPSocketConnectCallback The function to be called.
Additional info : This function is called as soon as the connection is established and the socket was created as asynchronous.

onData
Purpose : Define the function to be called when data is available on an asynchronous socket.
Read/Write : RW
Value : onTCPSocketDataCallback The function to be called
Additional info : When the onData value is triggered, use the read() function to get the data.

onIOError
Purpose : Define the error referencer.
Read/Write : RW
Value : onTCPSocketErrorCallback The function to be called
Additional info : This callback function is called when the network layer reports an error. The error number is passed as an integer

parameter.

Callback functions
The callback functions will be called in the scope of the socket object instance. For example, in the onConnect() callback
function, a write() can be done immediately without having to look up the connected socket instance.
The prototypes of the call back functions are as follows:

onTCPSocketCloseCallback
Purpose : Called when the socket is closed successfully.
Parameters : -
Additional info : -

onTCPSocketConnectCallback
Purpose : Called when a connect() operation completes successfully on an asynchronous socket.
Parameters : -
Additional info : When the connect() is successful, the read() and write() operations can be used on the socket.

onTCPSocketDataCallback
Purpose : Called when data is received on an asynchronous socket.
Parameters : -
Additional info : The callback function can retrieve the received data using the read() function.

onTCPSocketErrorCallback
Purpose : Called when an error occurs on an asynchronous socket.

ProntoScript Developer’s Guide

Page 60 ProntoScript Developer’s Guide Version 1.0

Parameters : e PanelError An instance of the PanelError class for the error.
Example : The error string can be retrieved by casting e to a string, e.g. System.print(e);
Additional info : -

Instance methods
connect()
Purpose : Create a connection on an ip address.
Parameters : ip String Ip address or host name to connect to.
 port Integer Port number to connect to.
 timeout Integer Maximum time in milliseconds to establish the a synchronous

connection.
Return : -
Exceptions : - Not enough arguments specified

- Argument is not a string
- Argument is not an integer
- Failed (could not connect)

Additional info : For a synchronous socket, the function returns when the connection is established.
For an asynchronous socket, it returns immediately and the onConnect() function is called as soon as the
connection is effective. A connection failure will be reported by a call to the onIOError() function.

close()
Purpose : Terminate the connection.
Parameters : -
Return : -
Exceptions : - Socket error
Additional info : -

write()
Purpose : Write data to a socket.
Parameters : s String The data to be transmitted. May contain binary data.
Return : -
Exceptions : - Not enough arguments specified

- Socket error
Additional info : The string data is queued for output on the network socket.

read()
Purpose : Read data from a socket.
Parameters : count Integer Number of bytes to read.
 timeout Integer Maximum time in milliseconds to wait for the data to arrive for

a synchronous socket. If omitted, returns immediately with the
currently available data.

Return : String The available socket data in case of a synchronous socket. For
asynchronous sockets, this function returns immediately and
the onData callback is called when the data is received.

Exceptions : - Argument is not a positive integer number
- Maximum blocking read length exceeded
- Insufficient internal memory available
- Socket error

Additional info : The function reads the available data from the socket. It returns immediately with the read data as result.
This function is typically used in the onData callback function to get the received data.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 61

A.13. Widget class

Description
This represents a button or panel in the configuration file or on the screen. This also includes firm keys and hard keys. If the
widget is on the current page, the data members will reflect the actual widget properties and they can be adjusted. Otherwise
the data members are read-only and reflect the properties as stored in configuration file. The change will be persistent for as
long as the activity is active. When changing to another activity and back the widget properties will be reloaded from the
configuration file.
Note that during script execution the screen is not updated, so any changes to widget properties will become visible after the
script has finished. Refer to GUI.updateScreen() to force intermediate screen updates.
Because the Widget class is used to represents four object types: Button, Firm key, Hard key and Panel, not all properties are
meaningful in all cases. In each property description below it is stated for which object type it is applicable.
Note also that during the execution of the activity script the current page is not yet created. If you want to manipulate widget
properties before they are displayed, please do so in the page script instead.

Instance properties
height
Purpose : Determines the vertical size of the widget.
Read/Write : RW
Value : Integer Range: 1…480
Applicable for : Button, Firm key, Panel
Additional info : If the size is smaller than the height of the displayed image, the image will be clipped. If the size is bigger,

the remaining space will be transparent.

label
Purpose : The text displayed in the widget.
Read/Write : RW
Value : String The string can be of any length but the visible part will depend on the dimensions of

the widget. May not contain binary data. Use the newline character sequence '\n' to
generate a text spanning multiple lines.

Applicable for : Button, Firm key, Panel
Additional info : -

left
Purpose : Determines the horizontal position of the widget.
Read/Write : RW
Value : Integer Range: -32768 to 32767
Applicable for : Button, Firm key, Panel
Additional info : This member stores the number of pixels between the left of the widget and the left side of the screen.

Negative values are allowed to place the widget (partly or completely) outside of the screen.

onHold
Purpose : Contains the function to be called while a button is kept pressed.
Read/Write : RW
Value : Function A valid function, or null if no button hold behavior is desired (anymore).
Applicable for : Button, Firm key, Hard key
Additional info : The callback function will be scheduled repeatedly every onHoldInterval milliseconds after the button is

pressed, until the button is released.
Note that when a button is pressed for more than 30 seconds, the control panel will automatically release the
button. This is to prevent unwanted behaviour because of an object positioned on top of the control panel.

Example : // Button script showing a counter from 1 to 10 in the button label while the button is pressed:
var counter = 1;
onHold = function() { label = count++; if(count > 10) onHold = null; };

onHoldInterval
Purpose : Define the button onHold repeat interval time. The default value is 1000, which means that when an onHold

function is defined, it is called every second.
Read/Write : RW
Value : Integer Range: 0…32767. The interval time in milliseconds. If set to 0, the onHold function

will not be called anymore.
Applicable for : Button, Firm key, Hard key, Panel
Additional info : -
Example : // Button script showing a increasing speed counter:

var counter = 1;
var limit = 10;
onHold = function() { label = count++; if (count == limit) { onHoldInterval /= 2; limit *= 2; } };

onRelease
Purpose : Program the function to be executed at the next button release.
Read/Write : RW
Value : Function A valid function, or null if no button release behavior is desired.
Applicable for : Button, Firm key, Hard key

ProntoScript Developer’s Guide

Page 62 ProntoScript Developer’s Guide Version 1.0

Additional info : The function will be called once when the button is released.
Example : Example of a button script that changes the button label when the button is released:

label = "Pressed";
onRelease = function() { label = "Released"; };

tag
Purpose : Get the tag of the widget.
Read/Write : R
Value : String String containing the tag.
Applicable for : Button, Firm key, Hard key, Panel
Additional info : The tag is used to find the widget in the list of visible widgets or in the configuration file.

top
Purpose : Determines the vertical position of the widget.
Read/Write : RW
Value : Integer Range: -32768 to 32767
Applicable for : Button, Firm key, Panel
Additional info : The top member contains the number of pixels between the top of the widget and the top of the screen.

Negative values are allowed to place the widget (partly or completely) outside of the screen.

visible
Purpose : Allows hiding or showing a widget on the screen.
Read/Write : RW
Value : Boolean True (visible) or false (not visible)
Applicable for : Button, Firm key, Panel
Additional info : -

width
Purpose : Determines the horizontal size of the widget.
Read/Write : RW
Value : Integer Range: 1…640
Applicable for : Button, Firm key, Panel
Additional info : If the size is smaller than the width of the displayed image, the image will be clipped. If the size is bigger,

the remaining space will be transparent.

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 63

Instance methods

executeActions()
Purpose : Executes the action list attached to the button, if any.
Parameters : -
Return : -
Exceptions : - ActionList error
Applicable for : Button, Firm key, Hard key
Additional info : This is a blocking function, so script execution will only continue after the action list has been completely

finished. If the action list contains a jump to another activity, the script will be aborted.
Note that executeActions will fail if another action list is being played already. When executing an activity
or page script this is mostly the case. To work around this problem, use scheduleAfter() to execute the
actions a little later when the activity switch or page jump is finished.

getImage()
Purpose : Retrieve the image attached to the widget.
Parameters : Index Integer The image index. A panel can have only one image (index 0)

and a button or firm key can have 2 images: one for the
released state (index 0) and one for the pressed state (index 1).
If index is omitted, 0 is assumed.

Return : Image An instance of the Image class representing the specified image
of the widget.

Exceptions : - Index is out of range
Applicable for : Button, Firm key, Panel
Additional info : An image cannot be created in a script. Instead you can copy it from one widget to another.
Example : Get an image from a panel in the gallery page of the current activity:

var img = CF.widget("IMAGE123", "GALLERY").getImage();

setImage()
Purpose : Change the image of the widget for a specific state (pressed or released).
Parameters : Img Image The image to be assigned to the widget state.
 Index Integer The image index. A panel can have one image (index 0) and a

button or firm key can have 2 images: one for the released state
(index 0) and one for the pressed state (index 1). If index is
omitted, 0 is assumed.

Return : -
Exceptions : - Not enough arguments specified

- Argument is not an image.
- Index is out of range.

Applicable for : Button, Firm key, Panel
Additional info : If the size of the new image is bigger than the value of the height and width properties, the image will be

clipped. If the size is smaller, the space outside of the image will be transparent.
Example : Example of button showing an animation from the gallery page of the current activity.

It loads the images from the panels tagged ANIM1_0, ANIM1_1 … ANIM1_9 successively:
var count = 0;
onHoldInterval = 100;
onHold = function()
{
 setImage(CF.widget("ANIM1_" + (count % 10), "GALLERY").getImage();
};

ProntoScript Developer’s Guide

Page 64 ProntoScript Developer’s Guide Version 1.0

 Appendix B: Predefined tags
The tags defined below have a special meaning. Avoid using them for your own widgets.

The following tags are defined for the firm keys:
Firm button Tag
1 (left-most) "PS_FIRM1"
2 "PS_FIRM2"
3 "PS_FIRM3"
4 "PS_FIRM4"
5 (right-most) "PS_FIRM5"

Hard button tags:
Hard button Tag
Backlight "PS_BACKLIGHT"
Channel down "PS_CHANNEL_DOWN"
Channel up "PS_CHANNEL_UP"
Cursor down "PS_CURSOR_DOWN"
Cursor left "PS_CURSOR_LEFT"
Cursor right "PS_CURSOR_RIGHT"
Cursor up "PS_CURSOR_UP"
Guide "PS_GUIDE"
Home "PS_HOME"
OK "PS_OK"
Menu "PS_MENU"
Mute "PS_MUTE"
Page down "PS_PAGE_DOWN"
Page up "PS_PAGE_UP"
Power "PS_POWER"
Volume down "PS_VOLUME_DOWN"
Volume up "PS_VOLUME_UP"

Predefined activity tags:
Activity Tag
System activity "PS_SYSTEM"

The system page has also a special tag:
Page Tag
System page "PS_SYSTEM"

Debug widget tag:
Page Tag
Debug panel "_PS_DEBUG_"

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 65

Appendix C: Pronto font
The following tables list the contents of the Pronto font that is available on the control panel. These
special unicode characters can be put in a text using the \u prefix followed by the four-digit, hexadecimal
unicode number.
For example, consider the following button script:

label = "Press \uF087 to start the movie";

This will put the text "Press ? to start the movie" on the button label.

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0020 ! " # $ % & ' () * + , - . /
0030 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
0040 @ A B C D E F G H I J K L M N O
0050 P Q R S T U V W X Y Z [\] ^ _
0060 ` a b c d e f g h i j k l m n o
0070 p q r s t u v w x y z { | } ~

 0 1 2 3 4 5 6 7 8 9 A B C D E F

00A0 ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯
00B0 ° ± ² ³ ́ µ ¶ · ̧ ¹ º » ¼ ½ ¾ ¿
00C0 À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
00D0 Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
00E0 à á â ã ä å æ ç è é ê ë ì í î ï
00F0 ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ
0100 A a A a A a C c C c C c C c D d
0110 Ð d E e E e E e E e E e G g G g
0120 G g G g H h H h I i I i I i I i
0130 I i ? ? J j K k ? L l L l L l ?
0140 ? L l N n N n N n ? ? ? O o O o
0150 O o Œ œ R r R r R r S s S s S s
0160 Š š T t T t T t U u U u U u U u
0170 U u U u W w Y y Ÿ Z z Z z Ž ž ?
0190 ƒ
02C0 ˆ ?
02D0 ? ? ° ? ˜ ?
0390 ?
03A0 O
03C0 p
0410 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
0420 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
0430 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
0440 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
05D0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
05E0 ? ? ? ? ? ? ? ? ? ' "

ProntoScript Developer’s Guide

Page 66 ProntoScript Developer’s Guide Version 1.0

 0 1 2 3 4 5 6 7 8 9 A B C D E F

2010 – — ‘ ’ ‚ “ ” „
2020 † ‡ • …
2030 ‰ ‹ ›
20A0 €
2120 ™
2200 ? ?
2210 ? - / v 8
2220 ?
2240 ˜
2260 ? = =
25C0 ?

 0 1 2 3 4 5 6 7 8 9 A B C D E F

F020 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
F030 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
F040 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
F050 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
F060 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
F070 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
F080 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
F090 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
F0A0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
F0B0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
F0C0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
F0D0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
F0E0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
F0F0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
FB00 ? ?

ProntoScript Developer’s Guide

Version 1.0 ProntoScript Developer’s Guide Page 67

Further reading
 [Flanagan] David Flanagan. Copyright © 2006, 2002, 1998, 1997, 1996, O'Reilly Media, Inc. ISBN 0-596-
10199-6. O'Reilly Media, Inc., JavaScript: The Definitive Guide, Fifth Edition.

Note: We strongly encourage you to get a copy of this book! For the Pronto development team it has
proven itself as a bible. When giving support to you, it can be most effective to refer to a particular
section or example in this book.

[JSLint] http://www.jslint.com/: provides tools to check your script for errors.

[Mozilla] http://developer.mozilla.org/en/docs/JavaScript: contains a very extensive reference and a guide
on the Core JavaScript 1.6, as well as a "re-introduction to JavaScript" as they call it.

ProntoScript Developer’s Guide

Page 68 ProntoScript Developer’s Guide Version 1.0

Glossary
CF - Configuration file
Editor - The ProntoEdit Professional program to create Pronto configurations
Firm key - The five physical buttons below the control panel screen
Hard button - The physical buttons of the control panel
Tag - The ProntoScript Name that can be specified in the editor for a widget
Widget - Graphical element on the screen. A button, panel or hard button

