ProntoScript
pronto:

<script>

@» Developer’s Guide

prénto PHILI Ps

Disclaimer

Conditions to the use of the ProntoScript Developers Guide

1. ProntoScript Developers Guide and its documentation (hereafter “PSDG”)

The PSDG has been written by Philips for owners and users of Pronto products as guidance to develop new
software-modules in ProntoScript. The PSDG is destined to be used only by persons, who are professional
users or installers of Pronto products and who are trained to use the PSDG to develop software-modules
in ProntoScript (hereafter “User™).

2. Intellectual property and ownership

The PSDG is intellectual property of Philips. By using the PSDG User agrees that the PSDG is, shall be and
shall remain the intellectual property of Philips. User shall immediately cease using the PSDG upon first
demand of Philips.

3. License grant

Under its intellectual property Philips hereby grants to User a royalty-free, non-exclusive, non-

transferable license solely to use the PSDG as guidance to develop software-modules in Pronto Script.

The rights of User are limited to the foregoing. By using the PSDG User accepts the preceding license

grant and acknowledges that the PSDG constitutes a valuable asset of Philips. Accordingly, except as

expressly permitted under the license grant, User agrees not to:

(@) otherwise use the PIP;

(b) modify, adapt, alter, translate, disassemble, re-create, copy, decompile, reverse engineer, or create
derivative works from the PSDG, Pronto products and/or the ProntoScript, or;

(c) sublicense, lease, rent, or otherwise transfer the PSDG to any third party.

4. Warranty and indemnification

Philips provides the PSDG “as is” as courtesy to User, “as is” means that Philips provides the PSDG
without any warranty or support. User is allowed to use the PSDG, accordingly the license grant, at its
own risk and responsibility. By using the PSDG User indemnifies Philips for all claims by any party caused
by or in connection with the use of the PSDG by User. Furthermore User shall not hold Philips liable for
direct, indirect, special, consequential or incidental damages, including but not limited to lost profits,
business interruption, or corruption or loss of data or information, caused by or in connection with the
use of the PSDG by User.

Page 2 ProntoScript Developer’s Guide Version 1.0

This is the first edition of the ProntoScript Developer’s Guide. It is targeted towards programmers who
want to develop rich 2-way applications for the Pronto Professional Platform. Custom installers who
want to integrate such 2-way modules into projects are not the intended audience. In that case we can
offer the "ProntoScript Installer’'s Guide".

Using this guide
The guide assumes you have some background in programming, either with languages like C, C++, Java

or other languages, or with JavaScript. Even so, it is built up from easy to advanced, with plenty of
examples to make the process of getting familiar with ProntoScript a fun experience:

For the experienced programmer
You can find snippets of proven, best practice code, before exploiting the full freedom of writing your
own, custom code.

For the novice programmer and Pronto enthusiast
You can experiment with working, useful, real life examples that demonstrate what ProntoScript can do
in automation projects.

This document does not strive for completeness. For a complete description of Javascript 1.6, on which

ProntoScript is based, we refer to David Flanagan's "Javascript, the Definitive Guide, 5" edition"
published with O'Reilly [Flanagan].

Version 1.0 ProntoScript Developer’s Guide Page 3

Table of Contents

[T O I 1 TP 2
LR O =TT 3
U] \(e X U o] =TT 3
TABLE OF CONTENTS ..ottt sttt sttt ettt 4
CHAPTER L. INTRODUCTION......cttttititttieieirieieieieieisieieisieiesesessssssssssse e ssss s ssss s s s ssssssssssssssssssssssssssssasssssssssssssnsssanns 8
R o TN Fo S Yol][1 T 8
] [V | = = (U) o N ot LT 9
R o le 1N re S Tol] = =7 N ! = ST 10
CHAPTER 2. CORE JAV ASCRIPT ..ottt 12
2.1 VARIABLES ...ttt 12

L LT Y/ 01 12
INUITIDETS. ...ttt b etttk e e e s e e bt et e e R e e £ e e a et 4R e e E £ oo E e e h e e E e e e €4 H e e b £ 2 a b€ 4R e e b e e a e e 4R e e b e e ae e e b e e b e e e e ebeeabeenneaneenbeennennnan 12

S (ST SUP PRSI 12

BIOOIBAN ...ttt R Rt R R R e R £ R e R e SR e e R £ oA R e SR e e R £ SR e oA R e R e e ARt e R e e R e e R e eRe e bt e neene e Eeerennean 13

= Y2 13

2.2, OPERATORS .. .iiiiiie ettt ettt 13

F N g1 1= Tl o] 01T = o] £ 14

LOTe] g a1 0T L= LAY ST 0] 01T = (o] £ 14

T T EST ST 0] o 1] (= L (o = 15

2.3, STATEMENT BLOCKS ...t tttteiteet ettt ettt ettt ettt ettt ettt ettt ettt oottt e oot e e et e et et e e e e et et e e et e e et e aaeaes 15
2.4, CONTROL FLOW ...ttt e ettt ettt ettt et e e e e e e e e et ee s 15
1702 T 15
SWITCH DIOCKS. ...t 16

1V 11 =T o o] o 1 16

(0 T T P 17
DrEAK STALEIMENT ... 17

2.5, EXCEPTIONS ... 17
2.8, FUNCTIONS ... 17
2.7 OBIECT S . ettt 18
2.8. REGULAR EXPRESSIONScciiiiiiiiiiit ittt ettt ettt ettt ettt ettt ettt et et e 18
e B Y 1 E o] N = o PP PPPPPPPPPPPPPP 18
CHAPTER 3. WIDGETS ..ottt 19
L PANELS .. 20
L2 BUTTONS e 23
R o T\ (] =10 L0 N S PP PPPPPPPPPPPP 24
i FIRM KEYS ..ot 24
CHAPTER 4. ACTION LISTS ...ttt 26
CHAPTER 5. TIMERS ...ttt 27
5.1 BLOCKING WAIT ...ttt 27
BL2 PAGE TIMER. ...ttt 27
5.3, SCHEDULEAFTER() +rttttuutteettttetttuutseeeseeesetunnaseeeeeeeesssnnaaeeeeeeestssnsaeeeeeeestsnnaaaeeeeeessesnnaneeeeeeennsnnnneeereennnnnnnns 28
5.3. BEHAVIOR DURING SLEEP MODEccitttitiittittttttt e et ettt ettt e e et e ettt e et e et et et et et et e et et e e e e et et e et e e et e aaaees 29
CHAPTER 6. LEVELS, SCOPE AND LIFETIME ...ttt 30
B. 0. LEVELS . e 30
8.2, SCOPE ... i 30
B.3. LIFETIME ... 30
CHAPTER 7. ACTIVITIES AND PAGES. ...ttt 31
7. L. ACTIVITY SCRIPT ..ttt ettt ettt ettt et e 31

L = T PR 31

[[0 T = T 11/ 31

72 PAGE SCRIPT ..ttt 31

L0 = T SN 31
=T T o o 32

Page 4 ProntoScript Developer’s Guide Version 1.0

L [0 0 0= = T TSN 32

818 T a0 TR (o T o 11 1= = T 11/ 33
Multiple page JumpPSs WIthin @CHVITYuiii e e e e e e e e e e e e e et e e e e e e e e eeenran e e eees 33
CHAPTER 8. EXTENDERS.........co ittt ettt 34
. 0 O O o g 1 = N = 34
8.2, SERIAL PORTS . .iiiiiiiei ettt ettt ettt et 34
BB INPUTS . 36
B RELAYS .. 36
8.5 LIMITATIONS ...ttt 37
CHAPTER 9. NETWORK CONNECTIONS........ccitttiritiriririeieieisieieieie s 38
CHAPTER 10. CREATING PRONTOSCRIPT MODULES.......ccootttttrreeeeeee s 41
CHAPTER 11. EXCEPTIONAL SCENARIOS. ..ottt 43
N O U e o ¥ 1= ¥ (o] T 43
R N o = s o o N T 43
G T [N TN = ot = ST 43
R N [N0 1Y = N = ST 43
TS Yol o i (ol g 1 0 N T 43
CHAPTER 12. DEBUGGING YOUR SCRIPT ..ottt 45
D B == T8 e R[] = ST 45
12,2, SYSTEM.PRINT() 1 eetttttutuunseeeetteeututessseeeeeeeattnaaaaeeaeeeeseasaaaeeeeeeessasnaaaeeeeeensssnnaaaeeeeeessssnnsaeeseeensssnnnsneeeeeeenns 46
APPENDIX A: PRONTOSCRIPT CLASSESDESCRIPTION (PRONTOSCRIPT API) ..o 47
A.l. ACTIVITY CLASS ...ttt e e e 48
[T o] 1o o 48
TS =T Lot o o] o= 11T 48

(== TS TSP PPR PR O PP P PR PPOPPTPP 48

2= o PP PP P P PR PPPPRPP 48

L0 = T 0 1 T=1 T T £ 48

LS 1= o 111N =) USRS USR 48

T T3 =T ot =0 0= 1 o o 48

E0) ettt ettt et oo e e ee et et e et e e ee et e et e ettt e e e e e e e et ee e et e et et e e et e ee et e et ee et e e e e e et en e er e 48

(VLo o= [TP U PSPPSR PPPUPTPPTPPI 48

A.2. L o 17X TP 49
01T o o] 1o o 49

(O F= 1T o] o] 1= 1 1= 49

1= 3= 070 L= USRS 49

L0 = T 0 =1 T T £ 49
BOHVITY() e+ e e e e e eee e eeeee e eee e e eeeeeees e e e e eeeeeeee e e e eeeeeeeeeeeeeeeeee e e e et eeeee e e e e et ee e e et et ee et et ee e et e ee e ee e 49

E0) ettt et et e et e e et oot e et e et et e et ee e e e e e e et ee e et et ee et ettt ee et e et et e et et ee et et e 49

{7 o= [T PP S PSP PSU PP PPPUPTPPRPPI 49

A.3. DIAGNOSTICS CLASS ...ceittiiietiitttett ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt et e et ettt e e ettt e e e e et e e et e e e e e e e e e e e e e aeaes 50
0TS o] 1o o 50

L0 F= TSR o o] 1= 1 1= 50

L0 = TS 0 =1 T T £ 50

TOG() v veeeee e eeeee e e eee e eee e eeeeeeeseee e e e e eeeee e e eeeee e e e e ee e e ee e eeeeeeee e e e et e ee e et ee e et et ee e e et et ee e e e ee e et ee oo sr e 50

A4, EXTENDER CLASS ...cctttiitiiiiiitittet ettt ettt ettt ettt ettt ettt ettt e e et e et e ettt ettt ettt ettt e et eees 50

[0 TS o o] 1o o 50
TS =T Lot o] o] o= 11T 50

(1] o181 1 [ST SURURRPRI 50

(1= 1= Y] | TS TSP RO PT PR RPPOPPTPP 50

SEITAI] oottt ettt e ettt e e e e et e et et e et e ee et et et ee ettt ee ettt ee e e e e eneee e e st ee e e ere e 50

T 1S3 =T ot =0 0= 1 o o 50

A.b. LU 0 17X PR 51
0TS o] 1o o 51

L0 F= 1T o o] 1= 1 1= 51

L0 = T 0 =1 T T £ 51

[0 S (DTS o F= Y T 1= USSR RRURR 51

[0l iDL o b= YA T 10§ I T TP P TP PPTPR PR UPPTPRTPROPPTPRN 51
updateScreen().........5bl

WIdGEL() .. veeveeeerieeneenne ...51

A.6. IMAGE CLASS ... 51

[0 1T o] 1o o 51

Version 1.0 ProntoScript Developer’s Guide Page 5

~rontoscript Developer's Guide

TS =T Lot o] o] o= 11T 51

T 1S3 =T ot =0 0= 1 o o 51
A.7. T X 52
[0 TS o] o] 1o o 52

T TS =T Tot N o] o] o =T 11T 52
(o101 D T - VPSP P PSP P PP UPPPPTPPPN 52
o141l (o PSP P PP PP PP UPPPPUPPPN 52

(o 070 | USRS 52
L0110 T= Tod 18 {1 o 1o T S 52
ONINPUEDEEACAITDACK. ...ttt ettt s ettt e e e st e e s tae e teeeateeanteeasee e beeanteeanseeameeeasaeeaseeanteeanteeaseeeseaantaeenseeanseanneeen 52

(o010l 1= o O | oo USRS 52
ONINPUETIMEOULCAITDACK ...ttt et et e sttt e et eeate e e se e e teeanteeenteeemeeeaseeanseeanteeanteeaseeeseaanteeenteeansaanneen 52

T I3 =T o= 0= 1 o o 53

[0 = () USSR 53

107 (oo ST SUR PRSI 53

LT L USSP 53

A.8. L] o 17 54
[0 TS o o] 1o o 54

T ISy = T ToT= T o] o] o 1= 11T 54
=" = TSP SUPURPPRI 54

(1S 0= 10 A7 USSP SURURRRPRI 54

2= o PP PR PP PR PPPRTRPP 4

T 1S3 =T o= 0 0= 1 o o 54
(T (o RSP PPR 54

A.9. LI o X1 55
[0 TS o] o] 1o o 55

T IS =T Lot o] o] o= 11T 55

T 1S3 =T o= 0 0= 1 o o 55

[0 = () S USUPRRUSR 55

SEE() oottt e et e et e et e ee e e et et e e e e e e et e et ee et e et ee et et et ee e e et ee et e et ee e e et et ee e e e ee e er e 55
L1070 o [USSP 55
N O R I o X1 56
[T o] o] 1o o 56
TS =T Tot N o] o] o= 11T 56
o1 = ST PSUR USRS 56

(07 o] £ TSRS SRURR 56
(o101 D T - VPSP OP PP P P PP UPPPPTPPPN 56
(o101 =l (o PO P PSP P PP UPPPPUPPPN 56

(o 070 | USSP SRR 56
7212 RSSO URRPR 56
S0 oo £ USRS URR 56
L0110 7= Tod 18 {1 o 1o T =S 57
(0lg S ST T T = O | oo USSR RSP 57

(0 1g IS S g (o (0= o= o USSP RRUSRI 57
ONSENTA TIMEOULCAIIDACK ...ttt ettt ettt et e st e e s bt e e be e e teeenteeaneeesbeeeateeanteeanteeaseeeaseeanteeenteesnsaanseen 57

T 1S3 =T ot =0 0= 1 o o 57
007 (oo USSP SUR RPN 57

[o= AV USSP SUP PRSI 57
SENT() c+v et e e ee et et e ettt e e e et et e e et et e e ee e et e e et e ee et et et ee et et ee e e e e eeeeeeee s e et ee e e e et ee e e eneeeeeees 57
N 2 Y N o X 58
[T o] 1o o 58

L0 F= 11T o] o] 1= 1 1= 58

L0 = T 0 =1 T T £ 58
EIAY() oo et e e ettt e ettt e et e et e et e ee ettt ee e e et ee ettt ee e e et eeeee et eeer e ee e e eneeeeeees 58

[0 (€1 o 7= |1 USSR SRR 58

[0 S V= YA = T o USRS 58
14101 USSR PRSI 58
SEEGIODAI() ... e e e e eeeee e e ee et e e et ee et e et e ee et ettt ee e et ee et ee e e ee e e e et eeeee e et ee e ere e 58
N O = Y 12 = o X 59
[T o] 1o o 59

L0 = TS oo £ 1 B o3 o S 59
TOPSOCKE() ..o eeeeeeeeseeeeeeeeeeeeeseeseeseeseeeeeeeeeeseeseseeseeeseeeeseeeeeeseeeeeeseeeeeeeeesseeeseeeeeeeseseeseeeseseeseeesessaeeeseseeeeesseeseeeneeeeseeseeneans 59
TS =T Lot o] o] o= 11T 59
(o0 110 ox (=0 [USSP RRUSR 59
(00102 o 1S USRS URR 59

[][0] 41T o: ST P PP P P PP UPPPPTPPPN 59
(o101 DL - VPP P PP PP PP UPPPPTPPPN 59
(o101 1@, =g o PSP P PP P P PP UPPPPTPPPN 59
L0110 T= Tod 18 {1 o 1o T S 59
Page 6 ProntoScript Developer’s Guide Version 1.0

ONT CPSOCKEICIOSECAIINACK ... vieieiie ittt e st s et e et e s ate e s st e e beeanteeenteeameeeasaeenteeanteeanteeeseeeaseeanteeanteeansaanneen 59

ONT CPSOCKEICONNECICAIIDACK ettt et et e st b e e s be e e teeanteesseeesbaeeteeanteeanteeaseeenseaanteeanseeansaenneen 59

ONT CPSOCKEIDGACAIIDACKeeeieieiieitie et s e sttt e e e e sateeaseeeabeeantaeenteeameeessaeeaseeanteeanseeaseeeaseaanteesnseeansaenneen 59

ONT CPSOCKEIEITOICAIIDACK.eetteitiie sttt sttt e et et e e s st e e te e e teeenteeamee e saeeaseeanteeanteeeseeeaseaanteeanteesnsaanneeen 59

T 1S3 =T ot =0 0 =1 o o 60

(o0 410 o () TP USSP SRR 60

(o [0S USSR RRPRR 60

LT = PSSP 60

1= o (ST SUR PRSI 60

N e T VYT = o 171 61

[0 TS o o] (oo 61
TS =T Tot T o o] o= 11 61
1070 SRS 61

=" = TSRS 61
SRS 61

[0/ [USSR RRURR 61

(o1 T |11 A7 USRS 61
(011 C 1= S USRS 61

[2= o PP PRSP P PR PPPPTRPP 62

0] o PP PRSP P PR PPPPRPP 62

LTS 1o =SSR 62

LT 1 RS TSPSTTR 62

T 1S3 =T ot =0 0= 1 o o 63

(=G ol AN o 1o 0 USSP SRS 63

[0S (7= o= USSR SRR 63

S S =" L= USRS 63
APPENDIX B: PREDEFINED TAGSoctotiretetseris et esssesesaessssses e sesesesssesesesessesssssessesasssessesesensssssessnsssssessssssssesassssssesassssens 64
APPENDIX C: PRONTO FONT ...ttt tee st esese s aeseesesaessssses e sesesessssesesesessesssssessesessssssnsesessssssessnsssnsesesssssesassssssnsassssens 65
FURTHER READINGootctiotierietctsese et st esse s etee st seseses e sesese e sesenesesesasesessesasssesssasesessnsasensssnsesenssensesenssensesesssesesasssssnsesenes 67
L 15 T 0 2SS 68
Version 1.0 ProntoScript Developer’s Guide Page 7

Chapter 1. Introduction

1.1. Why ProntoScript?

At Philips we took up the challenge to add 2-way communication and dynamic UI's to the Pronto system,
to bring it to an ever higher level of home automation sophistication.
We wanted a system that:

- has easy to use plug-and-play modules for the custom installer

- is powerful and flexible to the 2-way module programmer

- is easy to learn

We concluded that JavaScript, a popular and proven scripting language, is the ideal solution. Integrated
into ProntoEdit Professional, it unlocks the full power of the new WiFi enabled Prontos and Extenders:

1. JavaScript is a modern, very high level programming language, allowing rapid development of rich
end user applications

2. The web offers plenty of references and solutions to general programming challenges in JavaScript,
more than any other language.

3. Encapsulated into a single Pronto Activity (Device) that can be merged into projects, the
complexity of the code can be shielded off completely from the custom installer. He just wants to
plug in a 2-way module for controlling his selected equipment.

A few standardized hidden pages with instructions and parameters allow him to configure the
module to operate seamlessly within his specific system.

Let's begin our journey with the classic "Hello, world!" program and see how to write this in
ProntoScript.

Page 8 ProntoScript Developer’s Guide Version 1.0

Fezady

1.2. A simple button script
Example 1.1. Simple button script source code

| abel = "Hello, world!";

By specifying the above ProntoScript for a button, its label will be changed to the famous greeting
message at the moment we press the button.

S Prrwstit s Penleesinnal - P8 G0 - ok itksd 1

TRl wem e Lmeo ol woow fed

DERP o A BRX AR SMGAROSd PO o wsn W @R S =5

LT =0l
o4 Systom
2 Heme
+ Ham e Properties e X
B MewPue . . OO rEESSS—
Actiont | Lebet | ppeertron | Dissnos: |
- ddd bobsine
5 1% R 0 R N) el S S ES
= P s |
Rk
label= "Halo, woid!'|

To try out this example:
Open ProntoEdit Professional 1.1 or above
Create a new configuration (ctrl-N)
Open the home page and add a button to it (Alt-B)
In the Button Properties, in the actions tab:

a. Press the 'PS' toolbar icon

b. Add the ProntoScript code as shown
Download to the Pronto (ctrl-D)
On the Pronto, press the button you created once

Version 1.0 ProntoScript Developer’s Guide Page 9

~rontoScript beveloper's Guide

1.3. ProntoScript features

The main features of ProntoScript are:
ProntoScript is based on JavaScript 1.6
The ProntoScript APl exposes a set of objects that represent the Pronto System, the Graphical
User Interface and the Extenders.
ProntoScript is embedded in the Ul of the ProntoEdit Professional, facilitating writing and testing
custom code for the Pronto.
ProntoScript based 2-way modules can be integrated into any new or existing Pronto
configuration project by means of the merge feature.

ProntoScript is based on the popular JavaScript scripting language, as used in Internet web browsers. In
fact, the core ProntoScript language is largely compatible with ECMAScript-3, as present in popular web
browsers such as Microsoft's Internet Explorer, or Mozilla Corporation's Firefox.

Think of any programming challenge you faced in the past with languages like C, Pascal, C++: with
JavaScript (ProntoScript) you'll be able to handle it too, but most probably with less lines of code (and
less hassle). This is illustrated with the examples in the following chapters.

JavaScript has a top notch arsenal of powerful tools for data processing, so much needed to write state-
of-the-art 2-way communication drivers for a 2-way controller like Pronto.

Most RS-232 and TCP based protocols are ASCII based, some of them XML based. JavaScript provides
two powerful tools for tackling those: regular expressions and ECMAScript for XML (E4X).

Regular expressions

Regular expressions allow you to take any kind of data stream input and filter it for the information that
you need: either to update the display or know the exact 'state’ of the equipment you are communicating
with.

Example for a volume change response of an A/V receiver:
MV80<CR>
or in JavaScript:

var response = "MBO\r";

To filter out the integer value 80 without relying on the fact that it is exactly 2 characters starting at the
position 3 we would write:

var volune = parselnt(response. match(/\d{2,}/)[0]);

With this one line of code, volume will hold the correct volume value even if the response would
(hypothetically) be: " 9% & r M#80\r"

This would not be possible with a simple substring operation.

Regular expressions, although a bit cryptic, are really great for Pronto communication jobs. In a later
chapter we will go into great detail with more real live examples for getting the most out of them.

Page 10 ProntoScript Developer’s Guide Version 1.0

E4X
E4X is a recent addition to JavaScript to reference the increasing amount of internet data that is

presented in XML format. If your Custom Install equipment communicates with XML, then parsing that
data becomes an order of magnitude easier with E4X than it would be with classic regular expressions.

Example: A windows Sideshow gadget transmits these song data in XML format:

var inconingdata =
<body>

<content id="200" title="Now Pl ayi ng" bg="50"

<txt align="c" wap="0">Title:

<txt align="c" wap="0">Artist:

Artist</clr></txt>

bgfit="s" nenui d="1000">
<enpSong Titl e</enp</txt>

<clr rgb="FOFOF0">Song

<br/ >

<txt align="c" wap="0" rgb="0FOFOF">00: 00: 00</t xt >
<br/ >

</ cont ent >
</ body>;

Then these 5 lines of ProntoScript code will parse it and show the correct information on the screen of

the control panel:

var body = incom ngdata; // <body>..

GUI . wi dget (" PLAYI NG _STATUS") . | abel
GUI . wi dget (" SONG TI TLE") . | abel

GUI . wi dget (" ARTI ST_NAME') . | abel
QUI . wi dget (" PROGRESS") . | abel

The result could look like this:

body. cont ent .
body. cont ent .
body. cont ent .
body. cont ent .

@itle;
txt[O0];
txt[1];
txt[2];

Now Playing Progress

00:00:00

Artist | Song Artist

Song | Song Title

The exact working of the statements used in the above script will be explained in the next chapters.

Version 1.0 ProntoScript Developer’s Guide

Page 11

Chapter 2. Core JavaScript

This chapter describes the Core JavaScript features, which ProntoScript shares with other JavaScript-
based environments, such as those found in web browsers.

2.1. Variables
The following examples tell you almost everything there is to know about variables in JavaScript:

var a = 10; /1 declare a and assign integer value 10
b ="Hello, world!'"; // declare b and assign a string
/1 (var is added inplicitly)
b =5; /1 JavaScript is untyped: b is converted
/! automatically to hold an integer.

If you like more details, please refer to the [Flanagan] book or the [Mozilla] website:
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Guide:Variables

Primitive types
JavaScript has 3 primitive types: numbers, strings (of text) and booleans, plus two trivial datatypes: null
and undefined .

Numbers
JavaScript does not distinguish between integers and floating points: all numbers are 64 bit floats.

Here are some examples of numeric literals:

var a = -10000; /1 integer literal

a = Oxff; /1 hexadecinmal literal (deciml 255 :-)

a = 1.797e-308; /1 floating point literal (e can also be E)
Strings

A string is a sequence of Unicode characters. The first version of ProntoScript guarantees only ASCII
text, more to come.

JavaScript is very flexible and powerful in working with strings, by means of automatic concatenation and
number conversion. Some examples:

msg = "Hello, "+ "World!'"; //nmsg -> "Hello, World!"

var a = 18;

hex string = "Ox" + a.toString(16); //hex _string -> "0x12"
var n = 12345. 6789;

n.toFi xed(0); //"12346"

n.toFi xed(2); //"12345. 68"

n.t oExponential (2); //"1.23e+4"

n.t oExponential (4); //"1.2346e+4"

n.toPrecision(3); //1.23e+4"

n.toPrecision(6); //"12345.7"

Some more examples on converting strings to numbers:

var division = "8" [/ "2";
parsel nt ("3 apples");

par seFl oat (" 3. 14 kg");
par sel nt (" OxFE");

Page 12

//division is the nunber
//returns to 3
//returns to 3.14
//returns 254

ProntoScript Developer’s Guide

4

Version 1.0

Boolean

As in other programming languages, the boolean type is typically used for representing the result of
comparisons, e.g. in a if-then-else statement.

Again JavaScript is not strict in types here and converts easily between boolean, number and string when
appropriate: The boolean literals true and false are converted to 1 and 0 if used in a numeric context and
to the strings "true" and "false" in a string context.

This means that people used to classic C programming can opt for 1 & 0 to represent On/Off states of
custom install equipment. To advocate a consistent style however, we recommend using the boolean
type explicitly:

var hallWayLights = false; //Hall Way Light Load, default is OFF
hal | WayLi ghts = getLi ght Status();

i f (hallWayLi ghts)

{

/1 Hall Way Lights are ON

}
el se
/1l Hall Way Lights are OFF
}
Arrays
var a = new Array();
a[0] = 5;
a.[].] = IIHII,
a[2] = {num 5, str:"H"}; //object with two properties num and str

var matrix =[[1,2,3],[4,5,6],[7,8,9]];

As in other languages, JavaScript offers arrays to store a collection of values into one object, which can
be retrieved by a numeric index. The index always starts at 0. Again, being untyped, the type of these
values does not need to be the same for the different values as you can see in the examples.

As a result, Array size allocation is dynamic.
var a = new Array(5);
Thi s creates an array with 5 undefined elements, but it cannot know yet, how much memory to
reserve. Also, extra elements can be added by just assigning a value to it:
a[10] = "abc";
This extends the array to hold 11 elements.
2.2. Operators
JavaScripts operators are inspired by the syntax of the C - C++ - Java language syntax family.

For people with experience with these there are little surprises.
We will illustrate with a few examples.

Version 1.0 ProntoScript Developer’s Guide Page 13

~rontoscript Developer's Guide

Arithmetic operators

a=>5+6; /[l a==11
a=>5*m*6; /1 a==30
a=51/ 2 [l a==2.5 1! all nunbers are floats !
a = parselnt(5/2); /[l a==2
a=5 %2 /1 a==1 (nodul o, or remainder after division)
i = 1;
a = i++ [l a==1i==
i =1
a = + J ; // ==2 j::
Comparative operators
Javascript supports =, == and === operators. These can be confusing to novice programmers:

Assignment Operator =

a=>5
This is not a comparison operator, it is an assignment of the left-hand value to the right-hand variable.
Please note this common C-language pitfall, which is also possible in JavaScript.

a = getlLightStatus() // returns bool ean true or false
if (a = true)

myLabel . | abel = "Lights are On"
}
el se

myLabel .l abel = "Lights are O f"
}

The programmer wanted to write:
if (a == true)

but forgot one '='. Instead of giving a warning or error, JavaScript will just assign true to a, and evaluate
the assignment as always true. So the test will always succeed, even if getLightStatus returned false.

Equality Operator ==
This is the operator that is used to compare for equality. Again (yes, we are repeating ourselves), since
JavaScript is untyped, it will use a "relaxed" form of "sameness" that allows type conversion

a = getLightStatus() // returns bool ean true or false

if (a=="1")
{

This will give the result the programmer intended, as "1" and a will be converted to the number 1 and
then successfully compared.

In most cases, this relaxed comparison is what you want. If you really want to avoid the type conversion,
you should use the Identity operator

Identity Operator ===
True === "1" will evaluate to false as both are not identical because they are not of the same type.

Page 14 ProntoScript Developer’s Guide Version 1.0

The most practical use is if you really want to distinguish between undefined (declared but never
assigned a value) and null (not a valid object)

var a = new bj ect;

nmyLabel .| abel = (a.b===undefined) // evaluates to true
a.b =null; //or a.b = sonmeFunction() that returns nul
nmyLabel . | abel (a. b===undefined) //evaluates to fal se

nmyLabel . | abel (a. b===nul I) [l evaluates to true

Bitwise operators

Bitwise operators require integers, so JavaScript will implicitly convert numeric values to 32bit integers
before proceeding.

//Bitwi se AND
0x1234 & OxXO0FF // -> 0x0034: use typically for nmasking

//Bitwi se OR

0x02 | 0x8 | 0x10
/ /0000 0010 | 0000 0100 | 0001 0000 -> 0001 1010
/luse to set bit field registers

//Bitwi se NOT
~0x0f // -> OxfffffffO or -16

2.3. Statement blocks

Statement blocks or compound statements are formed by adding curly braces around a set of statements.
It allows you to add multiple statements in constructions where only one statement is allowed:

{

a = b5;

b = 6;

c = atb;
}

2.4. Control flow
For controlling the flow of program execution, JavaScript has the following set of constructs:
- iflelse
switch
while and do/while loop
for and for/in loop
break and continue statements

iflelse

i f (expression)
statenent 1
el se
statenent 2

The last two lines are optional here.

Version 1.0 ProntoScript Developer’s Guide Page 15

if (counter > 5)

}

/!l counter limt

el se

{
}

count er

switch blocks

switch (expression) {
statenents

}

var

dayNane;

counter + 1;

swi tch (dayNunber)

{

Note that the JavaScript version of the switch statement is more flexible than in classic languages: the
expressions used between the () and after case, can be of any form and type. They are evaluated and
compared at runtime. It also means that they execute less efficient than compile time versions of C, C++

case O:
dayNamne
br eak;

case 1:
dayNane
br eak;

case 2.
dayNane
br eak;

case 3:
dayNane
br eak;

case 4.
dayNane
br eak;

case 5:
dayNane
br eak;

case 6:
dayNane
br eak;

def aul t:
dayNane
br eak;

"Sunday";

"Monday";

"Tuesday";

"Wednesday";

"Thur sday" ;

"Friday";

"Sat ur day";

"Unknown" ;

and Java.
while loops
whi |l e (expression)
st at enment
var i = 0;
while (i <10) {
i ++;
Di agnostics. | og(i);
}

Page 16

ProntoScript Developer’s Guide

reached

Version 1.0

for loops

for (initialize ; test ; increnent)
st at enent
for (var i =0; i < 10; i++) {
Di agnostics. log(i);
}
for (variable in collection)
st at enent
var nmessages = ["one", "two", "three"];
for (var i in nessages) {
Di agnostics. |l og(i);
}

break statement
The break statement causes the execution flow to exit the enclosing loop or switch statement.

2.5. Exceptions

Explicit exception handling is a proven technique to keep robust code simple and easy to maintain. You
do this by separating the code that references error cases from the regular flow of the application.

A relevant example is to reference the possible exception you get when executing a Pronto button
action list in an asynchronous timer callback. Only one action list can be executed at a time and it is
possible the user just pressed a button when the timer expired.

Activity.schedul eAfter (1000, tinerTick);

function timerTick()

{
try
{
CF. wi dget ("MY_BUTTON', "MyY_PAGE") . execut eActi ons();
catch (e)
Di agnosti cs. | og("System Busy executing actions");
}
finally
{
Activity.schedul eAfter (1000, timerTick);
}
}

2.6. Functions

functionfuncname([argl [,arg2 [..., argn]]]) {
statenents
}

In the scripting language JavaScript, functions serve a few purposes
- Define a chunk of functionality but don't execute it yet.
Execute is at a later stage by calling the function.
Encapsulate logic into organized, reusable blocks.
Change the behavior of a particular execution by passing parameters (arguments) to it

Version 1.0 ProntoScript Developer’s Guide Page 17

~rontoscript Developer's Guide

Speed up execution as the function is compiled once, when it is defined: it does not need to be
recompiled.

Advanced: allow to write (pseudo) classes for OO programming.

Advanced: register the function reference as an asynchronous callback, to be executed by the
system at a later stage.

2.7. Objects
An object is a collection of named values, called properties. The ProntoScript APl offers many useful
objects to the programmer

var myButton = GUI .wi dget("My_BUTTON") ;
var myButtonText = myButton.label; // use the |abel property
/1 of the button class

You can also define your own objects.
This is useful as objects allow you to better structure your code by encapsulation: grouping data and
functionality that logically belong together into a single object.

var nmyReceiver = new Object();
nmyRecei ver. brand = " MyBrand";
nmyRecei ver. nodel = " M/Model ";

nmyRecei ver . mast er Vol unme = 60;

nmyRecei ver. source = "DVD";

myRecei ver.vol uneUp = function() {this.nmasterVol une++;};
nmyRecei ver . vol uneUp() ;

nmyPanel . | abel = myRecei ver. master Vol une; // shows 61

2.8. Regular Expressions
See chapter 11 in [Flanagan]. Also a lot of information and examples can be found on the internet.

2.9. Math object
The Math object gives access to a number of useful mathematical constants and functions.

Mat h. floor(2.5); /] -> 2
Math.ceil (2.5); //-> 3

Mat h. abs(-3); //-> 3
Mat h. random(); //->(pseudo)random nunber between 0.0 and 1.0

Math. Pl; // -> 3.141592653589793

Page 18 ProntoScript Developer’s Guide Version 1.0

Chapter 3. Widgets

In the editor a page is composed of a number of graphical objects, called widgets. These widgets can be
manipulated from a script to create a more dynamic user interface. The most obvious widgets are
buttons and panels, but also hard buttons are considered as widgets because they share a number of
properties with (soft) buttons.

All widgets have a tag, which is a unique identification string that is needed in order to get access to it
from a script. Imagine you created a new configuration file with one panel on the home page: by default,
it will display a white rectangle. Now, change its tag by putting the text "VOLUME" (without quotes) in
the ProntoScript Name field in the advanced tab of the property dialog for the panel:

ETPrr s Benl mesinn sl - T8 HG00 - ok bkl ® __]_ﬂj_;c'j

df W fed Lmpwd Niol wnooe fed

DR o~ ddRX Al GO Paadowem w5 EHE S0 =28

_-J.EIE
o4 Systom
2 Heme
+ Ham e Properties TS %
B Mg T x
Lobel | Pponcrantn | Divmrwars: Subvared |
Pratn S e Frocenies
PrordoZcspt Hane [OLLME
s thix namye b peoais s Faned bain g Prasiod gt
EE;T‘“F"F Tirwnt cit Bcticn sl 4= cirimsaicaly chance i Parefs
e = ' [(i =

WARNING: Often the tag or ProntoScript Name of a widget is confused with the label. Remember
that the tag is the invisible name of the widget and the label is the text that is displayed in the widget.

Version 1.0 ProntoScript Developer’s Guide Page 19

~rontoscript Developer's Guide

In the page properties dialog of the Home page, go to the Advanced tab and in the Page Script input field,
put the following line:

Page Properties 5'

Label Advanced |

— PrantoScript Properties

FrontoS cript Hame: I

¥ Execute once when page is shown

" Repeat Eveny 51 sECE

Fage Script:

var w o= widget(“vOLUHE”j;|

This one line of code looks in the page for a widget with the tag "VOLUME". It finds our panel and stores
a reference to it in variable w.

Note that the tag is case sensitive, so "VOLUME", "Volume" and "volume" are considered different tags!
Therefore, try to be consistent when using uppercase and lowercase.

TIP: We propose the convention to use uppercase for tags and lowerCamelCase for variables.

Once you have a reference to a widget, you can manipulate its properties. The next paragraphs will
show you some exciting examples for the different widget types.

3.1. Panels

The simplest widget type is a panel. Panels are a placeholder for a text and/or an image. Until now you
used it to display a text somewhere on a page, or to put some nice graphics on the background. Now,
with ProntoScript, the panels become dynamic. They can now show the state of the system, just like the
special widgets, called System Items that you are used to seeing on the system page. For example the
battery and WiFi widgets show a different image depending on an internal variable. The Activity Name
widget shows the name of the current activity but sometimes also shows strings like "Connecting..." or
"Command failed". Now you can do the same! Let's guide you through some examples.

Change the label
The label can be used for example to show the amplifier volume, the current tuner frequency or the
currently playing song title.

Page 20 ProntoScript Developer’s Guide Version 1.0

With the above page script, we retrieved a reference, w, to a panel with the tag " VOLUME" . Now we
want to show a real dynamic value on it. Let's add some code to the page script to create a variable to
contain this value:

var w = wi dget (" VOLUWE") ;
var volune = 0;
w. | abel = vol une;

When you download this to your control panel you will see that when the page is displayed, the panel
will show "0" immediately. This is because the page script is executed already before the page is really
displayed. So the labels of all widgets on a page can be properly initialized in the page script of that page.

Note that the vol ume, which is an integer number, is automatically converted to a string when assigning
it to the label property of the widget variable w.

Now, let's change the volume. In the Home Properties, go to the Hard Buttons tab and select the vol+
button. Unselect the "Use System Page Actions" checkbox. Then click on the ProntoScript icon to show
the script input field. Add the following code:

Device Properties EI

Label I Seltings Hard Buttons |Advanced|

— Add Action:

N = e ! e A o S R A R 2 A

ProntoS crpt:

ro lume++:
w. lakhel = wvolume:

Selected Buttan

Button name: | Latiel, |

™ Usze Systern Fage 4ctions

This little script increments our vol une variable and updates the label of our volume panel with the

new value. Note that we do not need to declare vol une and wagain in the button. Variables that are
declared in the page script can be accessed from all the button scripts on that page.

In the same way, add the following code to the vol- button:

vol une- - ;
w. | abel = vol une;

Now download this to the control panel and play with the vol+ and vol- buttons. You will see that the
value displayed in the panel will count upwards and downwards accordingly. Was that easy or not?

Change the position

Version 1.0 ProntoScript Developer’s Guide Page 21

~rontoScript beveloper's Guide

It is just as easy to change the position of the panel. Just change the value of the properties t op and
| ef t. As an example, put the following code to the cursor arrow keys:

Cursor up:

w.top -= 10;

Cursor down:;

w. top += 10;

Cursor left;

w. left -= 10;

Cursor right:

w. left += 10;

Download to the control panel and play with the cursor keys and see the volume walk around the
screen. Confirm that you can move the panel completely off the screen.

Hide and show

You can hide and show the panel as you wish. The panel has a property called visible. When writing
true or f al se toit, you are directly in control of its visibility. In our example, put the following script
in the ok hard button:

w.visible = 'w visible;

The not (!) operator negates the value that comes after it. Can you predict what will happen when you
press the ok button when you download this to the control panel?

Change the image

When you want to have a panel with dynamic graphics, you need to do some preparation. First, you
need to collect the images you want to display and resize them to equal the panel size. Create a separate,
hidden page in the same activity and attach each image to a separate panel in this activity. Give the

hidden page a label and a tag, for example " RESOURCES" . Give the panels tags like " VOLUMEQ" ,
"VOLUMEL", etc.

Now we can access those images:

functi on showol une()

{
w. | abel = vol une;
var v = w dget (" VOLUMVE" +vol une, "RESOURCES");
if(v)
w. set | mage(v.getlnage());
}

This code copies the image of one of our resource panels to our volume panel. Especially note the
validity check on v: if the widget is not found, v will not be a valid widget reference and v. get | mage()
would throw an exception causing the script to be aborted. The i f (v) makes sure the image is only
copied when v is not null.

Page 22 ProntoScript Developer’s Guide Version 1.0

In our example configuration above, in the button scripts for vol+ and vol-, replace the lines with:

w. | abel = vol une;
by:

showvol une() ;
3.2. Buttons

Buttons are put on a page to create a clickable area. So, you created a button, attached two images to
indicate its released and pressed state and gave it a label to be displayed on it. And, of course, you
attached actions to it. This is as far as you could go with the traditional Pronto buttons. Now let's see
what we can do with it that we couldn't do before.

First, we give it a tag, for example " MY_BUTTON" and look it up in the page script:

var w = widget (" MY_BUTTON');

Toggle button

A toggle button is a button that can show two (or more) states. For example, in your "Wat ch TV'
activity, you want to remember if you entered EPG mode or not.

First create an activity variable to hold this state by declaring it in the activity script:

Device Properties El

Label I Settingsl Hard Buttons Advanced |

ProntaScrpt M ame: I

Module Script: var epgln = false;

Then when the page with our button is displayed, we should initialize it properly in the page script:

var w = widget (" MY_BUTTON');
w. | abel = epgOh ? "On" . "Of";

Version 1.0 ProntoScript Developer’s Guide Page 23

~rontoScript beveloper's Guide

This locates our button and then gives it the label "On" when epgOn equals t r ue, and "Off" otherwise.
Now in our button script we put some code to toggle the state and show it:

epgOn
| abel

lepgOn;
eng] ? n O.]ll : n d f n ;

Note that we do not need to use the reference where to get to the label because we are already inside
the scope of our button object. For more information on button scope, refer to section 6.2.

Info popup

Suppose you want a popup window to be displayed for as long as you press a button? This can be done
by defining an onRel ease function. Create a panel with the desired image and text and label it

"I NFO'. In the page script, get a reference to the panel and make it invisible by default:

var info = wi dget ("I NFO")
info.visible = fal se;
Then, let's program the GUI DE hard button with a little script to show the info panel when it is pressed:

i nfo.visible = true;
onRel ease = function()

{
}s

info.visible = fal se;

While-pressed counter
If you want an action to be repeated for as long as a button is pressed, you can define an onHol d

function in the button script. Also set the onHol dI nt er val property to the number of milliseconds
between two repeats:

var counter = O;
onHol d = function() {
count er ++;
| abel = counter + " seconds";

}s
onHol dl nterval = 1000; // nsec

Download this to the control panel. Then, press the button and keep it pressed. Do you see the label
counting the seconds? What happens after 30 seconds? It will stop counting! This is because of a safety
mechanism built into the Pronto software. If it detects a button being pressed (stuck) for more than 30
seconds it stops the associated action.

3.3. Hard buttons
The hard buttons are different from the buttons described above in the sense that they do not have any
graphical properties like label, image, visible, etc. What you can do however is to define some onHol d

or onRel ease functionality for them. In order to get access to the hard buttons, some predefined tags
are available. See " Appendix B: Predefined tags" for the full list.

3.4. Firm keys

Firm keys are the five hard buttons on the bottom of the LCD display with the corresponding buttons
right above them. They have an image, a label, position etc. just like other buttons, but they are special.
The editor does not allow you to define a tag for them. Instead, you can get access to them using the
predefined tags " PS_FI RML" etc.

Page 24 ProntoScript Developer’s Guide Version 1.0

In the editor you can only define the firm key behavior on activity level, so normally the firm keys are the
same for all pages in one activity. Scripting allows you however to make them look different on each
page by changing their labels or even their images or position in the page script:

var firmL = GQJ . w dget ("PS FIRML");

firml. | abel = "Bl abl a";
function onFirml()
{

. Il put here your firm key code

}

And then put the following script in the firm key on activity level:

onFirmi();

For an extensive list of all the Widget properties and methods, please refer to Appendix A.

Version 1.0 ProntoScript Developer’s Guide Page 25

Chapter 4. Action Lists

One thing all widgets except panels have in common is that you can define a list of actions for them in
the editor. This includes sending infrared codes, performing page jumps, playing of sounds, etc.: a lot of
interesting stuff you also might want to do from ProntoScript. That's why we added the executeActions()
method to widgets.

For example, we can create a button that sends the infrared codes only when the button is pressed for
at least one second by putting the following code in its script:

onHol d = function()
{

execut eActions();

b
onHol dl nterval = 1000; // nsec

This example first defines an onHol d function that invokes the action list. This function then is
scheduled after one second.

Another example is our EPG toggle button that sends different infrared codes to enter and exit EPG
mode. For this, generate two buttons with the different infrared codes, tag them " EPG_ON" and
"EPG_OFF" and put them on a separate page tagged " | RCODES" . Then adjust the toggle button script
to do the trick:

epgn = lepgOn;
| abel = epgOn ? "On" : "Of";
page(" | RCODES') . wi dget (epgOn ? "EPG ON' : "EPG OFF"). execut eActi ons();

Attention point:

Action lists can not be executed in parallel. This means that when a script calls the executeActions()
method while an action list is already being executed currently, an exception will be thrown. When the
calling script absolutely wants the action list to be executed, it is advised to schedule a new
executeActions() in the handling of this exception. See example in “2.5. Exceptions”.

Page 26 ProntoScript Developer’s Guide Version 1.0

Chapter 5. Timers

ProntoScript provides three mechanisms which can be used for delaying execution of scripts: fully
blocking waits with the del ay() method, page timers and the schedul eAfter () method.

5.1. Blocking wait

Sometimes you need some time between two script statements. The Syst em del ay() function can
be used for that. Just pass the desired number of milliseconds as a parameter. For example, you want a
button that turns on the hallway light and automatically turns it off after 10 minutes. You can do this with
the following button script:

page(" | RCODES') . wi dget ("HALL LI GHTS ON"). execut eActions();
System del ay(10*60*1000); // nsec
page(" | RCODES') . wi dget ("HALL LI GHTS OFF"). execut eActi ons();

Download this to your panel, press the button and sit back and wait... This should block the control
panel for 10 minutes, so this should be enough for a coffee break. Note that the screen of the control
panel looks frozen. Also the control panel does not respond to any key presses. So when someone calls
on the phone there is no way to mute the stereo... Just ask them to call back after 10 minutes. Or
maybe we should rewrite our script to be a bit more user friendly? Let's try the second timer
mechanism:

5.2. Page timer

The editor allows you to mark a page script as repetitive. This feature can be used to count down until it
is time to turn off the lights. First declare a counter in the activity script:

var hall Li ghtsTi ner = 0;
Then in the button script turn on the lights and start the timer by setting the counter. Let's program it
to 10 seconds instead of 10 minutes for quicker testing:

page(" | RCODES') . wi dget ("HALL LI GHTS ON"). execut eActions();

hal | Li ghtsTimer = 10; // seconds

And finally define a page script to be called every second to decrement the counter and turn off the hall
lights if the counter reaches zero:

Version 1.0 ProntoScript Developer’s Guide Page 27

~rontoscript Developer's Guide

Page Properties 5'

Label Advanced |

— PrantoScript Properties

FrontoS cript Hame: I

" Execute once when page is shown

¥ Fepest Eveny 51 sECE

Fage Script:
if[kallLightsTimer > 0]
{

hallLights T irmer--;
ifl hallLightsTimer ==0]
page"|RCODES" L widget"HALL_LIGHTS_OFF"]. erecutedctions]);

Now try this on your control panel. Do you notice that the control panel is fully operational while the
timer is running? In fact, you don't even notice it. Except for the hall lights being on, you have no
indication that the page script in fact is activated every second. Maybe it is a good idea to show a little
icon somewhere on the screen to indicate that a timer is running. Or maybe after each decrement of the
counter update the button label with the remaining time:

hal I Li ght sButton. | abel = hallLightsTiner + " sec";

This implementation using the page timer has a number of drawbacks:
You normally want to put a lot of code in the page script but you probably don't want all of this
code to be repeated continuously.
There is only one page timer. If you need multiple timers you will need to use the scheduleAfter()
function discussed in the next section.

5.3. scheduleAfter()

A more sophisticated way to reference our hall lights timing is to use the third timer mechanism:
schedul eAft er (). This method of the Activity class allows you, as the API reference states in
Appendix A: "to program a function to be executed once after a certain time". So we just need to define
a function to turn off the lights, and call schedul eAft er () to trigger it, as shown in the following
button script:

page(" | RCODES') . wi dget ("HALL LI GHTS ON"). execut eActions();
function hallLi ghtsOf ()
{

}
schedul eAfter (10*60* 1000, hal |l Li ghtsOf);

page(" | RCODES") . wi dget ("HALL_LI GHTS OFF") . execut eActi ons();

Page 28 ProntoScript Developer’s Guide Version 1.0

5.3. Behavior during sleep mode

When the control panel is asleep, all timers are stopped. This includes the page timer and the
scheduleAfter timer. When the control panel is woken up again, the timers are resumed.

There are two exceptions in which the screen of the control panel does not go to sleep:
The control panel is put into the docking. While the control panel is powered there is no need to
save battery consumption.
The control panel is connected to a PC with a USB cable. In this case the control panel cannot go
to sleep because it needs to respond to USB messages.

In these cases the screen of the control panel will be turned off, but the timers keep running as expected.

You can also configure the screen to be always on. To do this, enter settings by pressing and holding the

settings icon for three seconds. Then on the second tab, increase the value below the text "Turn screen
off after:" until it displays "On".

Version 1.0 ProntoScript Developer’s Guide Page 29

~rontoscript Developer's Guide

6.1. Levels

A configuration file is a hierarchy of a number of activities or devices, each consisting of a number of
pages, that each in turn has a number of buttons and panels. The editor shows this hierarchy in its tree
view. You can attach scripts to all levels within this hierarchy: activity, page and button.

6.2. Scope

Now that we covered already numerous code ‘snippets' and dropped a word or two on scope it is time
to cover this subject in more detail.

Local scope
When you declare a function or variable in a button script, it will be known only in that script. That is
called local scope.

Page scope

But when you declare something in a page script, it will be known in all the button scripts on that page.
So you can declare a variable like epgOn in a page script and use it in a button script on that page. The
other pages however cannot access this variable in any way: that is page scope.

Activity scope

Everything declared in an activity script is known in all the page scripts and button scripts of that activity.
So if you declare a function like the onFi r mL() on activity level you can call it from the firm key scripts
on that activity but also from one of the page scripts of that activity as well as from any button script on
any one of the pages of that activity. But the function cannot be accessed from other activities and when
you switch to another activity, all declarations and definitions are destroyed.

The advantage of this mechanism is that if you have two activities, they can use the same names in their
scripts without interfering with each other. But sometimes you want to explicitly share information with
other activities, or store some persistent data so that you can restore the state of the activity after
switching to another activity and back. That's why we also have:

System globals

There is a special facility for information that needs to be used by multiple activities. You can store a
string globally using the Syst em set A obal () method and retrieve it with the

Syst em get d obal () method.

6.3. Lifetime

The lifetime of a script object is the time that the function, variable or class remains defined after its
declaration. This is defined by the time that the scope, in which the object is declared, remains active.
In ProntoScript, all scopes remain active as long as the activity remains active. This means that variables
set in one page will still have their values retained when coming back to that page.

Page 30 ProntoScript Developer’s Guide Version 1.0

Chapter 7. Activities and Pages

We already gave some examples of activity and page scripts. Now it is time to discuss those two script
types in more detail.

7.1. Activity script

The activity script is executed when you 'enter the activity'. This means when a page of the activity is
about to be displayed, and the previous page was not part of this activity.

The activity script is executed just after the activity is initialized, but before the page script is executed.
The page objects are not created yet. (so never use GUI . wi dget () on Activity level!)

Usage

The activity script can be used to initialize an activity, to define objects, functions and variables that need
to be used on all its page scripts. It also typically defines any parameters of the activity.

If functionality needs to be executed only the first time the activity is entered, a global variable can be
declared to check whether the activity script is already executed or not. For example, you have an
activity "Listen to iPod" and you want to initialize it the first time you connect to it

if (System getd obal ("ListenlPod.Initialised") == null)

. I/ performfirst tinme initialisation
System set d obal ("Listenl Pod. Initialised", "true");

Be aware that since the page objects are not created yet, it is not possible to show any feedback to the
user here. This should be done in the page script.

Home activity

A special activity is the Home activity, since it is the first activity that is selected after the control panel is
powered or after a configuration file download. The Home activity script should contain the definitions
needed in all the home page scripts. Besides that, it can also be used to initialize the global variables
stored in the System class.

Note: The editor does not allow renaming the Home activity? With ProntoScript you can (although we
do not recommend it). Just add this line to the Home activity script:

| abel = "Lobby";

7.2. Page script

The page script is executed just before a new page is going to be displayed. In fact, all the buttons and
panels on the page are created as specified in the configuration file by the editor. The only thing that has
not been done is to show them on the screen.

Usage

So now is the time to make some last-minute alterations! This means you can change the labels and
images of widgets to show the actual status. And you can hide any popup panels and other widgets that
should not be visible initially.

If you declared some general purpose functions in the activity script, you can use them here.

If you need some variables that need to be shared between different widgets on the page, you should
declare and initialize them here.

Version 1.0 ProntoScript Developer’s Guide Page 31

~rontoscript Developer's Guide

Page label

In the editor you can define a label for every page. These labels could not be used before on the device.
Now you can! Let's animate the activity label and the page label. Put this in the activity script:

var orglLabel = label; // Save original activity |abel

function ani mat eLabel ()

if(label == "")
| abel = orgLabel; // Restore original activity name
Llse
| abel = Il abel.substring(l); // Renove the first character

schedul eAfter (330, ani matelLabel); // Animate 3x per second

}

function start Ani mat eLabel (pagelLabel)

| abel = orgLabel + + pagelLabel ; // Conbine the activity and page

| abel
schedul eAft er (2000, ani matelLabel); // Start aninmating after 2 seconds
}

TIP: it is a good practice to use comments to make complex scripts more readable as shown in the
example above.

Now start the animation in the page script:

st art Ani mat eLabel (I abel) ;

Home page

The home page is the first page of the Home activity. Since the home page is the first to be displayed
after power up of the control panel, you can put a custom splash screen here. Create a panel with a nice
background and a welcome message and tag it " SPLASH" . Then, put the next code in the home page
script:

if (System getd obal ("Hone. Started") == null)

schedul eAfter (3000, function() { w dget ("SPLASH').visible = false; });
System set d obal (" Hone. Started", "true");

}

el se

{
}

wi dget (" SPLASH") . vi si bl e = fal se;

Page 32 ProntoScript Developer’s Guide Version 1.0

Jump to other activity

When an action list containing a page jump to a page of another activity is executed, the lifetime of the
current activity stops and the script is aborted. The execution of the action list however is not affected.

Multiple page jumps within activity

When an action list containing multiple page jumps is executed, each page script is executed when the
jump is done, and the next action in the action list is only executed after the page script has finished. This
has as consequence that this page script can not execute an action list, since one is already being
executed. An exception will be thrown. When the calling script absolutely wants the action list to be
executed, it is advised to schedule a new executeActions() in the handling of this exception. See example
in “2.5. Exceptions”.

Version 1.0 ProntoScript Developer’s Guide Page 33

Chapter 8. Extenders

Now that you know how to create some scripts and to manipulate the widgets on the screen, it is time
to interface with your equipment. This chapter covers the devices that you hooked up onto your serial
extender(s); the next chapter will cover communicating to the rest of the world over the wireless
network.

8.1. CF.extender[]

How to use an extender in ProntoScript? The CF class has a member called ext ender [] which is an
array containing valid entries for all extenders that are configured in the editor.

Suppose you want to use an extender that you configured at as extender 0. Then the following line gets
a reference to the Extender object that corresponds to it:

var e = CF.extender[0];

If extender 0 is not defined, e will now have the value undefined, which is equal to null. If you want your
script to protect against this, you can do it as follows:

if(e == null)

{ Di agnostics. |l og("Extender 0 is not defined");
LI se

) . Il put the rest of your code here

The Extender object that you have now, gives you access to the ports of the extender: the serial ports,
the power sense ports and the relay ports. It does this through its arrays: seri al [],i nput[] and
rel ay[] . Since a serial extender has four serial ports, four inputs and four relays, the arrays each
contain four references to objects of type Serial, Input and Relay. Note that, although the ports are
numbered 1 to 4 on the extender and in the editor, all array elements start at index 0 in ProntoScript!
This is according JavaScript convention.

8.2. Serial ports

Suppose you hooked up a serial A/V receiver onto the first serial port of the extender. So let's get the
first serial port from the extender:

var s = e.serial[0];

If the extender is defined as a basic extender, it will have no serial ports and the entry will be null, so you
can check against that:

if(s ==null)

{ Di agnostics.l og("Extender 0 is not a serial extender");
LI se

) . Il put the rest of your code here

Page 34 ProntoScript Developer’s Guide Version 1.0

Configuring the serial port

Now that we have the Serial object for the serial port that is connected to our receiver, we have to
make sure it is configured with the same serial communication settings that the receiver is expecting. For
example:

.bitrate = 9600;
.databits = 8;
.parity = 0; // None
.stopbits = 1;

n nunon

These are in fact the default communication settings of the serial ports. But it is a good practice to
explicitly configure them.

Sending and receiving
Now that we configured the serial port we can send a command to it to turn our A/V receiver on:

s.send("PWON\r ") ;

This sends the string "PWON" followed by a carriage return over the serial line.

With the receive function we can send a command and receive the response. This one line of code
requests the current master volume:

var volume = s.match("W?r", "\r", 250);

This first sends the string "MV?\ r " to the A/V receiver and then captures the incoming data until a
carriage return is received. The last parameter makes sure the operation does not wait longer than 250
milliseconds for the response to be received.

Let's combine all above code snippets together in a button script that requests the volume and puts it on
its label:

var e = CF.extender[0];

if(e == null)
{
Di agnostics.l og("Extender 0 is not defined");
}
el se
{ .
var s = e.serial[0];
if(s ==null)
{
Di agnostics.l og("Extender 0 is not a serial extender");
}
el se
{
s.bitrate = 9600;
s.databits = 8;
s.parity = 0; // None
s.stopbits = 1;
| abel = s.match("M?\r", "\ r", 250);
}
}

Asynchronous operation
The above script uses 'synchronous' serial communication. This means that the match function stops the
script, effectively blocking the control panel until the response is received. We already saw that blocking

Version 1.0 ProntoScript Developer’s Guide Page 35

~rontoScript beveloper's Guide

the control panel is generally not a good idea. The proper way to do this is to define a callback function
for the receiving of data:

s.onData = function(v){ |abel =v; };

Now the line;

s.match("MW2\r", "\ r", 250);

will not block the control panel anymore. The script will finish, and when the response with the volume
is received from the A/V receiver, our little function is called which sets the label.

You can also define a callback functions for handling the timeout and other errors. The following lines
make sure a diagnostics message is logged when a timeout or another error occurs:

s.onTi neout = function(v){ Di agnostics.log("A/'V receiver timeout"); }
s.onError = function(e){ Di agnostics.log("A'V receiver error " + e); }

8.3. Inputs

The power sense inputs of the extender are equally easy to operate. To get the first power sense input
of extender O, just write:

var i = CF.extender[O0].input[0];

Again, i will be null if the extender is defined as a basic extender, but let's assume you configured the
extender properly by now.

Getting the state
Now, imagine we want a panel on the page that should indicate the power state of a device. Let's tag it

"POWNER_STATE" and add a little page script to inquire the state of the input:

var i = CF.extender[O0].input[0];
var w = wi dget (" PONER_STATE');
w. label =i.get() ? "high" : "low;

This requests the state of the input from the extender and then updates the panel with the text " hi gh"
or "1 ow" accordingly. When you configure the page script to be repeated, you will see the panel being
updated when the input changes.

var i = CF.extender[O0].input[0];

var w = wi dget (" PONER_STATE') ;

w. label =i.get() ? "high" : "low;
8.4. Relays

You can control an extender relay port as follows. First you get the corresponding Relay object:

var r = CF.extender[O0].relay[0];

And then you can retrieve the current state with get () and change it with set () ort oggl e():
if(r.get() == false)
{

r.set(true);

Page 36 ProntoScript Developer’s Guide Version 1.0

8.5. Limitations

When using the extenders you should be aware of the fact that one extender can do only one thing at
the same time. So for example, while you are doing a receive operation on one serial port, you cannot
ask it to send something on another port or toggle a relay or so. Also if you are implementing an
installation with multiple control panels, you will get an error if you try to access a port of an extender
that is currently processing a request for another control panel.

So try to write scripts that do not block the extenders for a long time. Suppose that your A/V receiver
sends serial data when its volume is changed and that you want to reference these 'unsolicited events' to
update the screen of the control panel accordingly. You could use the following script:

functi on Pol | AVRecei ver(d)

{
.../* parse d for data to be displayed */

s.match("","\r",1000); // Collect data for one second

s.onData = Pol | AVRecei ver;
Pol | AVRecei ver (""); [/ Start polling

This will constantly read from the serial port and parse the received data to update the screen. But it will
also keep the extender locked continuously. Instead, you could also write:

function Pol | AVRecei ver ()
{

d =s.match("","\r",0); // Synchronous read with tinmeout=0
.../* parse d for data to be displayed */
schedul eAft er (1000, Pol | AVRecei ver); // Schedul e next poll
b
Pol | AVRecei ver (); // Start polling

Or simply put this in the page script with a repeat interval of one second:
d =s.match("","\r",0); // Synchronous read with tineout=0

.../* parse d for data to be displayed */

This is a better solution since now the extender will only be locked for a very short time every second.

Version 1.0 ProntoScript Developer’s Guide Page 37

~rontoscript Developer's Guide

Another powerful feature of the Pronto is its ability to perform network communication via WiFi. The
ProntoScript programmer can make use of this feature to interface with other IP networked devices. A
network connection can be established using the TCPSocket class.

The following line creates a variable of type TCPSocket:

var socket = new TCPSocket (true);

Similar as for serial communication, network sockets can be used in a synchronous or asynchronous way.
The parameter 'true’ above indicates synchronous, which means that the script will block during every
socket operation, while in the asynchronous case callback functions are called at the completion of each
operation.

Synchronous operation.
The first thing to do when setting up a network connection is to specify the destination:

socket . connect (' googl e. conm , 80, 3000);

This call tries to connect to the website " googl e. cont', port 80. Instead of the name, also the ip
address can be given, for example: " 192. 168. 42. 110" . When the destination is found within three
seconds, the script continues, otherwise an exception will be thrown. See section "2.5. Exceptions” on
handling exceptions, but let's first describe the case that everything goes well.

Once the connection is established, we can read and write to it. The following lines ask for the root
directory in http format. Then it stores the first 100 characters that are received during maximally 3
seconds.

socket . write("CGET /; HTTP/1.0\r\n\r\n");
result = socket.read(100, 3000);

When we are finished, we should close the connection:

socket . cl ose();

We can combine the above code snippets in one button script to show the result on the button label
when it is pressed:

var socket = new TCPSocket (true);
socket . connect (' googl e. com , 80, 3000);
socket . write("CGET /; HITP/1.0\r\n")

| abel = socket.read(100, 3000);
socket . cl ose();

Of course you should make sure you properly configured the wireless settings for the control panel in
the editor. Then, you can download this configuration to your control panel and test it.

When you press the button, you will notice that the script execution blocks the control panel while
setting up the connection and getting the data. In the next section we will show you how to avoid this.

Asynchronous operation.
When specifying false when constructing the TCPSocket, we get an asynchronous socket:

var socket = new TCPSocket (fal se)

Page 38 ProntoScript Developer’s Guide Version 1.0

The next line looks identical as in the synchronous case:

socket . connect (' googl e. conm , 80, 3000);

But now the connect () will return immediately and the script continues, although the connection is
not yet established. Therefore we cannot start writing to the socket, yet. So, the remainder of the script
should be done when the connection is ready: in the onConnect callback function:

socket . onConnect = function()

{
Hs

wite("GET /; HTTP/1.0\r\n");

So when the connection is established, the onConnect function is called which writes the request to
the socket. Note that within this socket function, we can call the wri t e() function without prefixing it
with socket, because the socket scope is active. Refer to section "6.2. Scope™ on scoping rules.

Then we want to read the response. But we cannot start reading yet, because no data is available yet and
we do not want to block the control panel to wait for data. This is triggered by the onDat a callback
function:

result = ;
socket.onData = function()

{
Hs

result += read();

When data is available, the onDat a callback is triggered. This function can be triggered repeatedly, as
long as data is coming in. That's why the above example accumulates everything in the result variable.
Note that no count and no timeout are specified for the read function. It will return immediately with all
available data.

According to the http standard, the destination will close the socket when the document is completely
transferred. This will trigger the onCl ose callback function that can show the accumulated result in the
button label:

socket . onCl ose = function()

| abel = result;

}s

The combined script looks as follows:

var socket = new TCPSocket (fal se)
var result ="";
socket . onConnect = function()
{
wite("GET /; HTTP/1.0\r\n");
b
socket.onData = function()
{
result += read();
b

socket . onCl ose = function()
| abel = result;

b
socket . connect (' googl e. com , 80, 3000);

Version 1.0 ProntoScript Developer’s Guide Page 39

It is a little more extensive than the synchronous case, but it does not block the control panel.
One last thing we should add is some error handling. In case of an error during one of the socket
operations, the onl CEr r or callback function is called, if defined:

socket.onl CError = function(e)

| abel = "Socket error: " + e;

Page 40 ProntoScript Developer’s Guide Version 1.0

Chapter 10. Creating ProntoScript Modules

A ProntoScript module is an xcf with one activity containing a number of pages and scripts that control a
specific device. This activity should be self-contained. This means that the scripts should not refer to
widgets in other activities or on the system page.

Merging XCFs to import activities

When you want to use the specific device, you can include its activity in your configuration file by
merging it with the ProntoScript module via the "Merge Configuration™ option in the editor. This will add
the activity at the bottom of the activity list.

Using hidden pages for easy configuration

Then the module probably needs to be configured. For example which extender should be used to
control the device, what ports are connected, buffer sizes, error levels, etc. The first hidden page should
be called " I NSTRUCTI ONS" and should contain help information to the custom installer. Next is a
page " PARAMETERS" with yellow fields (panels) to which configure the Pronto to communicate

properly to the device to be controlled. These pages should be made hidden, so that they are only visible
in the editor and not on the Pronto to the end user.

In an effort to standardize the custom installer experience with ProntoScript modules, we propose the
following template as a standard with the SDK. We strongly encourage you to make use of it

[::i ProntoEdit Professional - [TSU%600, - module_template_1_0.xcf]
E File Edit Yiew Insert Lavout Tools Window Help

(Dm ¥ o | ABE X | A5 Esm gL T & 2| Q& | o w5
R ¢ System
+ [Home
_' =3 Module Template 1.0 Wodule Termpiate 1.0+ invtructions for Module makel x Mudule Template 1.0 - INSTRUCTIONS
. 1, Delete this page when your module is ready Company ABC - Product DEF - 2-way Pronto Module
-&” Module Template 1.0 Properties
2, Structure of a Module
[[Instructions for Module maker] a.a number of visible pages Version X.Y Date YYYY-MM-DD
mP 1 b. an "INSTRUCTIONS™ hidden page
age these are instructions for the custom installer - Put your instructions for the custom installer here
Page 2 that will integrate and configure your module = as a rule the custom installer should only have to
INSTRUCTIONS please add a module version number to this page too configure some parameters in on the PARAMETERS page
E [] . A "PARAMETERS™ page we strongly discourage solutions where he has to edit the
m [PARAMETERS] l-w'::::mmm?hmmb{:s“m suﬁm;gmmpm rs ProntoScript code directly
to & mo 5 Sp
-8 [RESOURCES] Optional:
d. A "RESOURCES™ page:
Here you can add images and texts that are dynamically
Ioaded in the other pages

,, 7 £~ PARAMETELS '--_'.' ¢ 1.0 - RESOURI x|
=== Delete This Panel when the module is ready=== Delete This Panel when the module is ready ===

every parameter has a name and a YELLOW field To dynamically load images:

that the installer has to fill in. Pre-fill with a good default to hint Put ProntoScript tagged buttons and panels here,

at the corredt formatting

good.defaultvalue
197.168.1.100

8020

put puur
campainy oo
e

Ready [Page | | 1 um |

Note: ProntoScript scoping rules allow modules to be included more than once in a single project
without interfering with each other. An exception (by definition) is the use of Global variables. Therefore
it is advised to prefix the Global variable names with the Module name. The installer will typically change
this, making the string unique. You can of course ask him to do so explicitly in the INSTRUCTIONS page.

Version 1.0 ProntoScript Developer’s Guide Page 41

The parameters can be retrieved from the PARAMETERS page and stored in variables in the activity
script when the module is started. For example:

var server _url
var i p_address
var port_nr

CF. wi dget (" PARAMETERL", "PARAMETERS'). | abel ;
CF. wi dget (" PARAMETER2", "PARAMETERS'). | abel ;
CF. wi dget (" PARAMETER3", "PARAMETERS"). | abel ;

If you need more than four parameters, add another parameter pages with the same layout. Make sure
the tags and labels of the parameters on this new page are numbered correctly.

Page 42 ProntoScript Developer’s Guide Version 1.0

Chapter 11. Exceptional scenarios

11.1. Out of memory

When a script runs out of memory, the script engine tries to free up memory with a process called
‘garbage collecting'. This reorganizes the memory space allocated to the script engine in order to
recover chunks of memory that are not used anymore. If this process does not free up enough memory,
script execution will be halted and a diagnostic message will be logged. When the garbage collection
process takes more than one second, also a diagnostic message will be logged.

11.2. Nested scripting

Nested scripting is prohibited. When a script is triggered while the script engine is already executing
another script, it will be queued after the engine is finished. This also means that event functions will be
called after the current script is finished.

11.3. Infinite scripts

It is possible to create a script that takes a long time to execute and effectively blocks the control panel.
In order to enable the user to fix this situation a key combination can be pressed during the start-up of
the control panel that disables the script engine. The key combination to be used is: Backlight + Menu +
ChannelUp. It must be pressed continuously during the start-up animation and the please wait screen. A
diagnostic message will be logged to indicate the limited functionality available. The user can then use the
normal download procedure to download a corrected configuration file into the control panel. Another
reboot is required to start the script engine again.

11.4. Invalid arguments

When an invalid value is set to a class property, or when a class function is called with invalid or
insufficient parameters, a diagnostic message will be logged and the execution of the erroneous script
will be stopped.

11.5. Script Exceptions

When an abnormal situation is detected during script execution, a script exception is generated. This can
be any of the following:

1 Exception 2 Description

3 "Failed" 4 The operation failed, e.g. reading from an extender serial port timed out.

5 "Not Implemented" 6 A class property or method was used that is currently not implemented.

7 "Not Available" 8 A class property or method was used that is not available.

9 "Insufficient internal memory 10 Not enough memory when reading from a TCP socket or setting a globa
available" variable.

11 “Invalid name" 12 The name passed to System.getGlobal() or setGlobal() is not a proper

string.

13 "Expected a function" 14 The specified callback is not a function.

15 "Expected an integer" 16 The parameter passed is not an integer.

17 "Expected a positive integer" 18 The specified Page.repeatinterval is negative.

19 "No argument specified" 20 Not enough arguments are passed to the class method.

21 "Not enough arguments specified" 22 Not enough arguments are passed to the class method.

23 "Argument is not a string" 24 Socket.connect expects a string as host name.

25 "Argument is not a function" 26 Activity.scheduleAfter expects a function.

27 "Argument is not an integer 28 A timeout must be an integer number.
number"

29 "Argument is not a positive integer 30 A timeout or the number of bytes to receive must be larger than 0.
numer"

31 "Argument is not an image" 32 Widget.setimage() is called with an invalid argument.

33 "Argument is not a boolean" 34 Input.match() is called with an invalid argument.

35 “"Limit of simultaneous timers 36 The maximum number of functions are already scheduleAftered
reached"

37 "Socket error" 38 A socket operation resulted in an error. E.g. a read() or write() failed.

Version 1.0 ProntoScript Developer’s Guide Page 43

39 "Failed to connect" 40 Socket.connect() failed. Check your network settings.

41 "Maximum blocking read length 42 You tried to read more than 65536 bytes from a synchronous socket.
exceeded"

43 "Maximum read length exceeded" 44 You tried to read more than 512 bytes from a serial port.

45 "ActionList Error" 46 Error during executeActions().

Page 44 ProntoScript Developer’s Guide Version 1.0

Chapter 12. Debugging your script

There are a number of ways to help you debug your script in case it does not work as expected. Or it
does not work at all because of a typing mistake.

12.1. Debug widget

The first thing you can do is to create a debug widget on the page you want to debug. Create a panel
with the tag " _PS_DEBUG " . In the Dimensions tag, position it in the upper left corner and resize it to
full screen. In the Appearance tab, check the No Fill box to make it transparent so you can still see and
touch the other widgets on the page. Then in the Label tab, set the text alignment to bottom left.

Label | Appearance | Dimensions Advanced | Label | Appearance Dimensians IAdvancedl
 Position
— ProntaScript Froperties B v
(;- [#®.%): ID . ID pixels
®
ProntoScript Mame: |_PS_DEBUG_
_ . . Size
Usge thig name to access thiz Panel from a ProntoScript
E.gb. Flrom Fage Timer or Button Script to dynamically change this Panel's o - [B40 piels
abel .
i
CF Widget{"MyPanel1"label = "Hella World" 4 H: piels
Label Appearance | Dimensionsl Advancedl Label |.¢ppearance| Dimensionsl .&dvancedl
Label: ;I

‘ Label

-
1 F

hd A | hd —Font zize “ertical Alignment——

I:;LFIIE - [0 =] {E%ﬂgﬂ [j i“:

— P [+ a| 8] n]al
— Hy: GG
— [aflw]le ICe Ll b Ce T Ao e eI]

EnEnERDRNRE

S iatim g I e Y

% Uze Image Tiansparency [EHG]

Now, if an error occurs when compiling or executing your script, an appropriate error message will be
logged into this debug widget. It will indicate the offending script, the line number and a short description
of the error. Suppose we made a typo in our page script:

var e = CF.extender[0];

This will give the following output on the screen:

Version 1.0 ProntoScript Developer’s Guide Page 45

[ProntaBerips arran TypoError: CE.aNtendr Has no propertios
I i 52 e &1 AR [und g d]

12.2. System.print()
You can add messages yourself to the debug widget while the script is running. This is done with the
System print () function. An example:

Systemprint("Starting page script");

var w = w dget ("WRONG TAG');

Systemprint("Wdget: " + w);

w. | abel = "Hello, world!";

System print("Page script finished");

This will give the following output:

Wed May 02 9:45%am

Bty paqe SEiipl
idget: nusl

GRESATint arrar TYRRError: W RS fd profod riies
i 120 5 21k [Untanged)

Note that you can pass any string to the Syst em pri nt () function, but the text will be truncated to
99 characters.

Page 46 ProntoScript Developer’s Guide Version 1.0

Appendix A: ProntoScript Classes Description (ProntoScript API)

The Maestro control panel scripting language provides a number of object classes that can be accessed
and provide access to the internals of the control panel. The next diagram shows an overview of the

classes:
&) *g,
H WQGHI@ ([WQGHU
DRARMW LOBI$ 0 VUQ) SFVYW JHVLVSD ' DM WIQ)
SDIHIOMI3 0 WAIQ) LIS 0 WM 3DJH - JHVLVSD\7IPH WIQ)
ZIGHNIQE: 0 WD 1IOMI30 WIQ LQI$SO WNQ) : IGIHWV : XSCOMEFLHD
: : ! | ZIGHWOmI: 0 VMQ) : LGHW
I | I : T
| ! I | | | |
|] | | |
| | | | |
_________ J |] |
i ' T v
! SFVILW . © LGHW
| [oW oo KHLKVZLOV
I wIo g P OEHO WY
I | SDIHIQmO30WIQ) 3DJH s GIN LQNV
||| VAKHGX®S WULCBUDMRQ LQMCRQS WU IQIE REMPW ERRO - RQ+RG
|| ZIGHQIY: 0 WIQ Q30 WUQ : LGHW | ROFRGQMUNDD LV
| . [RGE HBDVH
! = | BIO W
I : I \RSO LQV
! | i ! YMECH] ERRO
_______ \ < | |-—-—--Y ZIGKOIQN
([\n:(/ga-u 3DJH ! H HPXMSFRQY
ETTe] | JHWPDJH LQIGH O LQV 1P DIH
LOSX@® QSXW | VHWPDJH LGP DUH LQGH O
LH])J@S"”)\ U'S'WLQ/V -~ LQP T LQN
\HLDS® 6HUDD \BIT WD i
ZIGHWOR: 0 WG IGHW e
T T T !
| I_| |
L l
| |
I : I
| | |
| | |
. 3 : 6HUDO
I [B LQV
| QSXwW - COBEW LV
I | RQ D RQ DD
I RAURY RY URJ
| | RQIP HRXW RQ7 [P HRXW
| AW ERRO UMD LNV
I | P DK LQABMD ERROLQIP HRXWI LQV ERRO ARSELWO LQV
|| Z OWQIP HRXW IOV ERRO PDWWK L[QHTD WUQ LGP 0 WIIG LQIP HROW LQNV WY
| UHHYH IQHTO WUQ) LQERXQI LQMQIP HRXR LQNV \UQ)
: VHG LQGDWH WMQJ
|
|
|
|
N
5HDA
A B 7836RFNHW
VHWQRAMML ERRO FRQOHRAMG ERRO
\RIJG RQE&RQQHFW
RQEBH
6\ VWP RQ DB
RQ2 (UWRJ
RQ7LPHRXW
GID\ FEVH LQIP RO LON
. JHW HJ FRQQHPAEGAHWE WIQ [CBIRWY LQMGHIP HRXWY LW
LDJ QRALFV JHWILP Z DFD HMRD WIQ) UHDGLQERXQE LOMQIP HRWE LOV QD
_SUOV Z WM LQEDB0 WU
B 10M W W0 | VHWORDOQODP H WUQ) LOYDGHT WMQY

The following sections list the available script object classes in alphabetical order.

Version 1.0

ProntoScript Developer’s Guide

Page 47

~rontoscript Developer's Guide

A.1l. Activity class

Description

This class represents a control panel activity as defined in the editor. An activity is in fact a collection of pages with common

hard key definitions.

Instance properties

label

Purpose: Thisisthetext that is shown in the ActivityName status field when a page of the activity is displayed.

Read/Write: RwW Thelabel of all activites can be changed, but the change will only persist aslong as
the current activity is active.

Value: String Thetext can be of any length but the number of characters displayed will depend on

Additional info :

the size of the activity statusfield widget.
The activity name status widget displaysthelabel of the current activity. Thisisinitially the name that is
defined in the configuration file. By writing a value to the label property the displayed activity name can be
changed. When null iswritten to thelabel, the original nameis restored.

Example: Cr.activity().label = "Busy.."; // Show Busy instead of the activity name
Cr.activity().label = null; // Show activity name again

tag

Purpose: Thetag isthe activity name within the script. It is used to find a specific activity in the configuration file.

Read/\Write : R

Value: When no tag is defined an empty string isreturned

Additional info :

String

Class methods
scheduleAfter()

Purpose:
Parameters:

Return :
Exceptions :

Additional info :

Program afunction to be executed once after a certain time.

duration Integer The duration after which the function should be executed in
milliseconds. Must be greater than 0.

onAfter Function Thefunction to be scheduled.

id Anything Optional parameter. Theid can have any type and is passed asa

parameter to the onAfter function to enable usage of ageneric
event function.
- Not enough arguments specified
- Argument is not an integer
- Argument is not afunction
- Limit of simultaneoustimers reached
Thefunctionisonly called if theactivity is still active after the specified duration. Multiple functions can be
scheduled in parallel with different durations. The execution of the functions will be scheduled sequentially.
A maximum number of 10scheduled functionsare supported in pardlel.
Note that all control panel timers are paused while the control panel is asleep, postponing al pending
function calls.

Instance methods

page()

Purpose: Find the page with tag tagP in the activity..

Parameters: tagP String Thetag of the page to search for. May be empty, null or
omitted. May be a predefined tag.

Return : Page The classinstance corresponding to the found page, or null if
no page found with the specified tag. If no tag is specified, the
current page is returned of the current activity.

Exceptions : - Argument is not astring

Additional info :

See the Page Class chapter for adescription of thereturn value.
Refer to the Predefined Tags section for the applicable predefined page tags.

widget()

Purpose: Search the activity for awidget in a specific page.

Parameters: tagW String Thetag of the widget to search for as defined in the editor.

tagP String Thetag of the page in which to search. May be empty, null or

omitted. In that case the current page of the current activity is
searched for the widget.

Return : Widget The classinstance corresponding to the found widget, or null if
not found.

Exceptions : - Not enough arguments specified

Additional info :

- Argument is not astring
Refer to the Widget Class section for detailed information on the return type.
Refer to the Predefined Tags section for the applicable predefined page tags.

Page 48

ProntoScript Developer’s Guide Version 1.0

A.2. CFclass

Description
This class gives access to the configuration file of the control panel, containing all items programmed by the editor.

Class properties

extender(]
Purpose: Array that provides access to the extenders defined in the configuration file. The array has afixed size of 16
elements. Each element matches the corresponding extender as configured in the editor.
Read/\Write : R
Value: Extender An entry refersto avalid Extender classinstance, or undefined if no extender with
that id is defined in the configuration file. Note that null and undefined are equal in
ProntoScript.

Additional info :
Example :

Refer to the Extender Class section for an extensive description of its properties.
/1 Locates extender O and checks if it is configured:
var e = CF. extender[O0];
if (e ==null)

Di agnosti cs. | og("Extender 0 not avail able");

Class methods

activity()

Purpose: Provide accessto one of the activities that are defined in the configuration file.

Parameters: tagA String Thetag to look for. May also be empty, null or omitted.

Return : Activity Thefirst found activity object with the specified tag, or null if
no activity was found in the configuration file with that tag. If
no parameter is specified, or if an empty string is passed, the
current activity object isreturned.

Exceptions : - Argument is not a string

Additional info:

Refer to the Activity Class section for detailed information on the activity members.
Refer to the Predefined Tags section for the tags to be used for the home and system activity.

Example : CF. activity("DVD"): returnsthe activity tagged "DVD".
CF.activity(""):returnsthe current activity object.

page()

Purpose: Provide access to one of the pagesin the configuration file.

Parameters: tagP String Tag name of the page to search for. If both tagA and tagP are
omitted, empty or null, the current pageis returned of the
current activity. In this case tagA isignored.

tagA String Tag name of the activity in which to search. If omitted, empty
or null, the current activity is searched.

Return : Page A Page class instance corresponding to thefirst page found
with tag tagP in the activity with tag tagA.

Exceptions : - Argument is not astring

Additional info :

Refer to the Page Class section for detailed information on the page class members.
Refer to the Predefined Tags section for the tags to be used for the home and system page.

Example : CF. page("2", "DVD"):returnsthe pagewith tag "2" from the activity tagged "DVD".
CF. page(" Macr 0s") : searchesthe current activity for the page tagged "Macros".
CF. page() : returnsthe current page.
widget()
Purpose: Searches theconfiguration file for a specific button, panel, hard key or firm key and returns the
corresponding Widget classinstance.
Parameters: tagW String Tag name of the widget to search for.
tagP String Tag name of the page that contains the widget. If both tagA and
tagP are omitted, empty or null, the current page is searched.
tagA String Tag name of the activity that contains the page with the widget.
If omitted, empty or null, the current activity is searched.
Return : Widget Classinstance corresponding to the first matching widget in the
specified page of the specified activity, or null if the widget is
not found.
Exceptions : - Argument is not astring

Additional info:

The search order is not defined. Thereforeit is not advisable to give the same tag to multiple activities, pages
or widgets.

Refer to the Widget Class section for detailed information on the page class members.

Refer to the Predefined Tags section for the tags to be used for the home and system page.

xamples: CF. wi dget ("Al I On", "2", "DVD'"): searchesthe widget tagged "AllOn" on the page with tag "2"
on the activity tagged "DVD".
CF. wi dget ("On", "Macros") : returnsthe button tagged "On" on the macro page in the current
activity.
Version 1.0 ProntoScript Developer’s Guide Page 49

~rontoscript Developer's Guide

A.3. Diagnostics class

Description

The diagnostics class is be used to log messages in the diagnostics list.. This list can be inspected by pressing and holding the
following buttons in the stated order: backlight button + menu + firm key #2. Each line of the diagnostics list can hold up to
80 characters, and the list can hold up to 200 lines. When a new message is logged, it is added on top of the list. When more
than 200 lines are stored, the oldest ones are discarded. When the same message is logged multiple times within one second,
it is logged only once.

Class properties
None

Class methods

log()

Purpose: Add amessage to the diagnosticslog.

Parameters: S String The message text to be displayed.
Return : -

Exceptions :

Additional info :

Example:

The message will be truncated to fit on one line of the diagnostics widget. The new message will be added
on top of thelist.
Di agnostics.log("extender " + i + " does not respond");

A.4. Extender class

Description

The Extender class provides an interface to a RF extender, including its input ports, serial ports and relay outputs. The
extender configuration is read from the configuration file, so in order to be able to control an extender from a script, it needs
to be properly defined in the editor. This means that it should be marked as selected in the Extender tab of the System
Properties of the configuration file.

Instance properties

input[]

Purpose: Theinput[] array contains the power sense inputs of an extender. Normally, a serial extender has 4 power
sense inputs. The inputs are numbered from 0to 3. A wireless extender has no power sense inputs. This can
be checked by comparing the array elements with null.

Read/\Write : R

Value: Input Instance of the specified extender input, or null if the extender is not defined asa

Additional info :

serial extender.

/1 Get input port O on extender O:

Example:
var p = CF. extender[O].input[0];

relay(]

Purpose: Array giving access to a specific extender relay port. A serial extender has 4 relay outputs numbered from 0
to 3. A wireless extender has no relay ports, so the array elementswill be null.

Read/\Write : R

Value: Relay Instance of the specified extender relay port, or null if the extender is not serial or the

Additional info :

port number isout of range.
Refer to the Relay Class section for more details on how to control the extender relays.

Example: /Il CGet relay port O on extender O:
var p = CF.extender[0].relay[O];

serial[]

Purpose: This array gives access to the serial port with the specified number of an extender. A serial extender has 4
serial ports numbered from O to 3. A wireless extender has no seria ports and the array elements will be
null.

Read/\Write : R

Value: Serial Instance of the specified extender serial port, or null if the extender is not serial or the

Additional info :
Example:

port number isout of range.
Refer to the Serial Class section for more details on the extender seria ports.
/] Cet access to serial port O of extender O:
var p = CF.extender[0].serial[0];

Instance methods

None

Page 50

ProntoScript Developer’s Guide Version 1.0

A.5. GUI class

Description
Control the graphical user interface of the control panel and access the objects that are displayed on the screen.

Class properties
None

Class methods
getDisplayDate()

Purpose: Get the control panel date.

Parameters: -

Return : String Containsthe date as shown in the Date status widget.
Exceptions : -

Additional info : -

getDisplay Time()

Purpose: Get the control panel time.

Parameters: -

Return : String Contains the time as shown in the Time status widget.

Exceptions : -

Additional info : -

updateScreen()

Purpose: Force a screen update.

Parameters: -

Return : -

Exceptions : -

Additional info : Because during script execution the screen is not updated, an explicit screen update can be enforced with
this function call. Script execution istemporarily stopped until the screen update is finished.

widget()

Purpose: Search for awidget that is currently displayed on the screen. This aso includes firm keys and hard keys and
the widgets on the System page.

Parameters: tagW String Thetag of the widget to search for as defined in the editor.

Return : Widget The classinstance corresponding to the found widget, or null if

not found.

Exceptions : - No argument specified
- Argument is not astring

Additional info : Refer to the Widget Class section for detailed information on the return type.

A.6. Image class

Description

This class represents an image in the configuration file. It cannot be instantiated directly. It is used when retrieving the image
of a button, panel or firm key in order to copy it to another button, panel or firm key.

This can be useful when creating gallery pages with artwork widgets or when creating animated widgets with a changing image.

Instance properties
None

Instance methods
None

Version 1.0 ProntoScript Developer’s Guide Page 51

A.7. Input class

Description
This class represents a power sense input port on a serial extender.

Instance properties

onData

Purpose: Define the callback function for extender input port data.

Read/Write: RwW When assigned, the callback will remain defined aslong as the current activity
remains active.

Value: OnInputDataCallback Set to null for synchronous (blocking) operation.

Additional info : -

onError

Purpose: Define the callback function for extender input port errors.

Read/Write: RwW Persistent as long as the current activity remains active.

Value: onlnputErrorCallback Setto avalid function or to null if no error handling is desired.

Additional info : In case of an erroneous match() or write() operation, the onError function is called.

onTimeout

Purpose: Define the callback function when atimeout occurs during an asynchronous match() or wait() operation.

Read/Write: RwW Persistent as long as the current activity remains active.

Value: onlnputTimeoutCallback

Additional info : -

Callback functions
The prototypes of the call back functions are listed below. In the cal back functions, you can use 'this' to refer to the scope of
the actual input object that is causing the call back.

onlnputDataCallback

Purpose: Called when an asynchronous match() or wait() completes.
Parameters: state Boolean The state of the power senseinput: trueif high, falseif low.
Additional info : -

onlnputErrorCallback

Purpose: Called when an error occurs during an asynchronous get(), match() or wait() operation.
Parameters: e Panel Error Theerror that occurred as an Error object
Example : /1 The error string can be retrieved by casting e to a string:

Systemprint(e);
Additional info : -

onlnputTimeoutCallback

Purpose: Called when atimeout occurs during an asynchronous match() or wait() operation.
Parameters: -
Additional info : -

Page 52 ProntoScript Developer’s Guide Version 1.0

Instance methods
Note that one extender can only reference one request at the same time. The below methods will fail and throw an
exception when the extender is busy with another request. Therefore avoid using long timeout values!

get()

Purpose: Get the value of the power sense input.

Parameters: -

Return : Boolean Trueif theinput ishigh, falseif theinput islow.
Exceptions : - Failed (extender error)

Additional info :

The get() isexecuted asablocking call, i.e. script execution continues only after the extender hasreplied
with the requested power sense value.

match()
Purpose: Wait for the port state to match a specific state. The operation completes as soon asthe port isin the
requested state or when the indicated time has passed.
Parameters: state Boolean The requested state to wait for.
timeout Integer The maximum time in milliseconds to wait for the specified
State.
Return : Boolean Trueif port state changed in time, false otherwise.
Exceptions : - Not enough arguments specified

Additional info :

- Argument is not a positive integer number

- Failed (extender error)

If no onDatafunction is specified, the script execution is halted until the operation completes.

Otherwise, the script continues execution and the onDatafunction is called when the operation completes. In
case of atimeout, the onTimeout callback function isinvoked instead. Exceptions are passed to the onError
callback.

wait()
Purpose: Wait for an input port to change state. The operation completes as soon as the port state changes or when the
indicated time has passed.
Parameters: timeout Integer The maximal time in milliseconds to wait for the specified port
to change state.
Return : Boolean Trueif the port state was changed, or false if timeout.
Exceptions : - No argument specified

Additional info :

- Argument is not a positive integer number

- Failed (extender error)

If no onDatacallback function is specified, script execution is halted until the operation completes.
Otherwise, the script continues execution and the specified onDatafunction is called when the operation
completes. If atimeout occurs, the onTimeout function is called instead. The onError functioniscalledin
case of an exception.

Version 1.0

ProntoScript Developer’s Guide Page 53

Description

A.8. Page class

This class allows access to the properties of a page in the configuration file.

Instance properties

Additional info :

label

Purpose: The name of the page as defined in the editor.
Read/\Write : R

Value: String

The page nameis not visible on the control panel, but it can be defined in the editor.

repeatinterval

Additional info :

Purpose: This member stores the time after which the page script is repeated.

Read/Write: RwW The page repeat interval can only be set for the current page.

Value: Integer Peage script repeat interval in milliseconds. If the value is zero, the page script is not
repestedly executed.

Additional info : -

tag

Purpose: Get the tag of the page.

Read/\Write : R

Value: String String containing the page tag.

Thetag is used to find the page in the configuration file.

Instance methods

Additional info:
Examples:

widget()

Purpose: Searches the page for a specific button or pandl and returns the corresponding Widget classinstance.

Parameters: tagW String Tag name of the widget to search for.

Return : Widget Classinstance corresponding to the first matching widget in the
page, or null if the widget is not found.

Exceptions : - Not enough arguments specified

- Argument is not astring
Refer to the Widget Class section for detailed information on the page class members.
p. wi dget (" RESULT") : searchesthe widget tagged "RESUL T" on page p.

Page 54

ProntoScript Developer’s Guide

Version 1.0

A.9. Relay class

Description

A relay port of a serial extender can be controlled with this class type.

Instance properties

None.

Instance methods

get()

Purpose: Inspect the actual value of arelay output.

Parameters: -

Return : Boolean Trueif therelay is closed, false otherwise.

Exceptions : - Failed (extender error)

Additional info : The get() isexecuted asablocking call, i.e. script execution continues only after the extender hasreplied
with the requested relay state.

set()

Purpose: Set arelay output in a specific state.

Parameters: state Boolean Set to trueif the relay should be closed, falseif it should be

open.

Return : -

Exceptions : - Failed (extender error)

Additional info : The set() is executed as ablocking call, i.e. script execution continues only after the extender has performed
the requested operation.

toggle()

Purpose: Change the relay output state. If the relay was closed, it isopened. If it was open, it is closed.

Parameters: -

Return : -

Exceptions : - Failed (extender error)

Additional info : Thetoggle() is executed asablocking call, i.e. script execution continues only after the extender has
performed the requested operation.

Version 1.0 ProntoScript Developer’s Guide Page 55

A.10. Serial class

Description

A serial port of an extender can be used to send or receive data. A serial port has its own input buffer on the extender. This
buffer accumulates incoming data until the control panel issues a receive() command. When receiving data on the serial port,
the received bytes will be removed from the input buffer, so that they will not be read twice. When sending data on the serial
port, its input buffer will be flushed.
Send and receive operations can be combined into one combined receive() command in order to support multiple control

panels querying for data.

Instance properties

bitrate

Purpose: Set the serial communication speed.

Read/\Write : RW

Value: Integer Valid values are: 2400, 4800, 9600, 14400, 19200, 28800, 31250, 38400, 57600
and115200 bits per second.

Additional info : -

databits

Purpose: Set the number of data bitsfor the serial communication.

Read/\Write : RW

Value: Integer Valid valuesare 7 and 8.

Additional info :

onData

Purpose: Define the function that is called when dataiis received after a successful call to receive() or matchy().

Read/\Write : RW

Value: onSerialDataCallback Set to null for synchronous (blocking) operation.

Additional info :

If an onData function is defined but onTimeout is null, then in case of atimeout the onData callback will be
called with the received data.

onError

Purpose: Define the function that is called when an error occurs during receive() or match().
Read/\Write : RW

Value: onSerialErrorCallback Set to null if no error handling is desired.

Additional info : -

onTimeout

Purpose: Define the callback function when atimeout occurs during an asynchronous receive() or match().
Read/Write: RwW Persistent as long as the current activity remains active.
Value: onSeria TimeoutCallback

Additional info : If omitted, the onData callback will be called with the received data.

parity

Purpose: Set the parity of the serial communication.

Read/\Write : RW

Value: Integer Valid values are: 0 (none), 1 (odd) and 2 (even).

Additional info : -

stopbits

Purpose: Define he number of stop bitsfor the serial communication.

Read/\Write : RW

Value: Integer Valid valuesare 1 and 2.

Additional info :

Page 56

ProntoScript Developer’s Guide

Version 1.0

Callback functions
The prototypes of the call back functions are as follows. In the call back functions you can use 'this' to refer to the scope of
the Serial object that is causing the call back.

onSerialDataCallback

Purpose:
Parameters:
Additional info :

Called when an asynchronous receive() or match() completes successfully.

S String The datathat was received on the serial port.
This string can contain binary data.

Use s.length to get the number of bytes received.

onSerialErrorCallback

Purpose:
Parameters:

Example :
Additional info :

Called when an error occurs during an asynchronous receive() or match().

e PanelError Aninstance of the PanelError class for the error that occurred.
Theerror string can be retrieved by casting e to a string:

Systemprint(e);

onSerialTimeoutCallback

Purpose:
Parameters:
Additional info :

Called when atimeout occurs.
S String The partial datathat was received on the serial port.
This string can contain binary data. Use s.length to get the number of bytes received.

Instance methods
Note that one extender can only reference one request at the same time. The methods below will fail and throw an
exception when the extender is busy with another request, therefore, avoid using long timeout values!

match()
Purpose: First transmit an optional string on the serial port to query for data and then start receiving on the same port.
Parameters: S String String to be transmitted, may be null or empty.
terminator String Theterminator string to wait for.
timeout Integer The maximal time in milliseconds to wait for the serial datato
arrive.
Return : String The received dataincluding the terminator string, or an empty
string in case of asynchronous operation.
Exceptions : - Argument is not astring

Additional info :

- Argument is not a positive integer number

- Failed (extender error)

The operation is complete if the specified terminator string is received or until timeout milliseconds have
passed. In the last case the currently received datawill be returned.

If no onData function is specified, the script execution is halted until the operation completes and the
received datais returned. Otherwise, the script continues execution and the specified onData function is
called when the operation compl etes.

receive()
Purpose: First transmit an optional string on the serial port to query for data and then start receiving on the same port.
Parameters: S String String to be transmitted, may be null or empty.
count Integer The number of bytesto receive.
Timeout Integer The maximal time in milliseconds to wait for the seria datato
arrive.
Return : String Thereceived data, or an empty string in case of asynchronous
operation. Can contain binary data.
Exceptions : - Argument is not a positive integer number

Additional info :

- Failed (extender error)

The operation is complete if count bytes are received or until timeout milliseconds have passed. In the last
case less than count bytes will be returned.

If no onData function is specified, the script execution is halted until the operation completes and the
received datais returned. Otherwise, the script continues execution and the specified onData function is
called when the operation compl etes.

send()

Purpose: To transmit data on the serial port using the communication settings as specified in the above data members.

Parameters: S String The datato be transmitted. May contain binary data. Maximal
length is512 bytes.

Return : -

Exceptions : - Not enough arguments specified

Additional info:

- Argument is not astring

- Failed (extender error)

The send is executed as a synchronous (blocking) operation. Script execution is halted until the extender
repliesthat the requested operation is completed.

Version 1.0

ProntoScript Developer’s Guide Page 57

A.11. System class

Description

The system class gives access to some general system level functionality. Furthermore it manages global information that
needs to be shared between different activities. This information is stored as a list of name-value string pairs. The string values
can contain binary data. The length is restricted by the available amount of memory.

Class properties
None

Class methods

delay()

Purpose: Wait for aspecific time. This blocks script execution during the specified time.
Parameters: duration Integer Duration of the delay inmilliseconds.
Return : -

Exceptions : - Not enough arguments specified

Additional info :

- Argument is not an integer
Note that the screen contents will not be refreshed during adelay. If thisis desired, useschedul eAfter
instead.

getGlobal()

Purpose: Retrieve a string value stored in the global variableslist.

Parameters: name String The name of the global variable to find.

Return : String The value of the global variable, or null if the nameis not
found.

Exceptions : - Not enough arguments specified

- Invalid name

Additional info : -

getFirmwareVersion()

Purpose: Show the control panel firmware version.

Parameters: -

Return : String Control panel firmware version, e.g. "TSU9600 V1.1"

Exceptions : -

Additional info : -

print()

Purpose: Display a debug message on the debug output panel.

Parameters: S String Text to be displayed. Thistext is appended to the label of the
debug window. Maximum length: 99 characters. If longer, will
be truncated.

Return : -

Exceptions :

Additional info :

The debug panel isapanel or button tagged " PS DEBUG_". When defining this panel in the editor, make
sureit hasthe text alignment set to bottom |eft, so that the newly added text alwaysisvisible.
Use"\n" to insert line breaksin thetext output.

setGlobal()

Purpose: Store astring item in the global variableslist.

Parameters: name String The name under which to store the string value.

vaue String The string value to store. May contain binary data. The current

value associated with the given name, if any, is overwritten. If
the new value is null, empty or omitted, the current string item
with the specified nameis removed.

Return : -

Exceptions : - No argument specified

Additional info:

- Argument isan invalid name
- Insufficient internal memory available

Page 58

ProntoScript Developer’s Guide Version 1.0

A.12. TCPSocket class

Description

A network socket can be created to establish a TCP connection over a wireless network.

Class constructor

TCPSocket()

Purpose: Create anew TCPSocket instance.

Parameters: Blocking Boolean Indicatesif the new socket should be blocking (true) or not
(false).

Return : TCPSocket A new TCPSocket class instance.

Exceptions : -

Additional info :

When true, creates a synchronous (blocking) socket, i.e. the connect() and read() functions work
synchronous, they will block until the operation isfinished. If blocking isfalse (or omitted), the
asynchronous implementation with callback functions will be used.

Instance properties

connected

Purpose: Check the connection state of the socket.

Read/\Write : R

Value: Boolean Trueif connected, falseif not.

Additional info : Set to true as soon as the connection is established.

onClose

Purpose: Define the asynchronous socket close callback function.

Read/\Write : RW

Value: onTCPSocketCloseCallback Set to null if no notification isrequired.
Additional info : Used to detect the end of anetwork transfer or that the socket is closed by the destination.
onConnect

Purpose: Define the asynchronous socket connect callback function.

Read/\Write : RW

Value: onTCPSocketConnectCallback ~ Thefunction to be called.

Additional info : Thisfunction iscalled as soon asthe connection is established and the socket was created as asynchronous.
onData

Purpose: Define the function to be called when datais available on an asynchronous socket.
Read/\Write : RW

Value: onTCPSocketDataCallback Thefunction to be called

Additional info : When the onDatavalueistriggered, use the read() function to get the data.
onlOError

Purpose: Define the error referencer.

Read/\Write : RW

Value: onTCPSocketErrorCallback Thefunction to be called

Additional info :

This callback function iscalled when the network layer reports an error. The error number is passed as an integer
parameter.

Callback functions

The callback functions will be called in the scope of the socket object instance. For example, in the onConnect() callback
function, a write() can be done immediately without having to look up the connected socket instance.

The prototypes of the call back functions are as follows:

onTCPSocketCloseCallback

Purpose:
Parameters:
Additional info :

Called when the socket is closed successfully.

onTCPSocketConnectCallback

Purpose:
Parameters:
Additional info :

Called when a connect() operation completes successfully on an asynchronous socket.

When the connect() is successful, the read() and write() operations can be used on the socket.

onTCPSocketDataCallback

Purpose:
Parameters:
Additional info :

Called when data.is received on an asynchronous socket.

The callback function can retrieve the received data using the read() function.

onTCPSocketErrorCallback

Purpose:

Version 1.0

Called when an error occurs on an asynchronous socket.

ProntoScript Developer’s Guide Page 59

~rontoscript Developer's Guide

Parameters:
Example :

Additional info :

Panel Error Aninstance of the PanelError classfor theerror.
The error string can be retrieved by casting eto astring, eg. System print(e);

Instance methods

connect()
Purpose: Create aconnection on anip address.
Parameters: ip String Ip address or host name to connect to.
port Integer Port number to connect to.
timeout Integer Maximum time in milliseconds to establish thea synchronous
connection.
Return : -
Exceptions : - Not enough arguments specified

Additional info :

- Argument is not astring

- Argument is not an integer

- Failed (could not connect)

For a synchronous socket, the function returns when the connection is established.

For an asynchronous socket, it returnsimmediately and the onConnect() function is called as soon asthe
connection is effective. A connection failure will be reported by acall to the onl OError() function.

close()

Purpose:
Parameters:
Return :
Exceptions :

Additional info :

Terminate the connection.

- Socket error

write()

Purpose:
Parameters:
Return :
Exceptions :

Additional info :

Write data to a socket.

S String

- Not enough arguments specified
- Socket error

The string data isqueued for output on the network socket.

The datato be transmitted. May contain binary data.

read()

Purpose: Read data from a socket.

Parameters: count Integer Number of bytesto read.

timeout Integer Maximum time in milliseconds to wait for the datato arrive for
asynchronous socket. If omitted, returnsimmediately with the
currently available data.

Return : String The available socket datain case of a synchronous socket. For
asynchronous sockets, thisfunction returnsimmediately and
the onData callback is called when the dataiis received.

Exceptions : - Argument is not a positive integer number

Additional info:

- Maximum blocking read length exceeded

- Insufficient internal memory available

- Socket error

The function reads the available data from the socket. It returnsimmediately with the read data as result.
Thisfunction istypically used in the onData callback function to get the received data.

Page 60

ProntoScript Developer’s Guide

Version 1.0

A.13. Widget class

Description

This represents a button or panel in the configuration file or on the screen. This also includes firm keys and hard keys. If the
widget is on the current page, the data members will reflect the actual widget properties and they can be adjusted. Otherwise
the data members are read-only and reflect the properties as stored in configuration file. The change will be persistent for as
long as the activity is active. When changing to another activity and back the widget properties will be reloaded from the
configuration file.

Note that during script execution the screen is not updated, so any changes to widget properties will become visible after the
script has finished. Refer to GUI.updateScreen() to force intermediate screen updates.

Because the Widget class is used to represents four object types: Button, Firm key, Hard key and Panel, not all properties are
meaningful in all cases. In each property description below it is stated for which object type it is applicable.

Note also that during the execution of the activity script the current page is not yet created. If you want to manipulate widget
properties before they are displayed, please do so in the page script instead.

Instance properties

height

Purpose: Determinesthe vertical size of thewidget.
Read/Write: RW

Value: Integer Range: 1...480
Applicable for : Button, Firm key, Panel

Additional info :

If the size is smaller than the height of the displayed image, theimage will be clipped. If the size is bigger,
the remaining space will be transparent.

label

Purpose: Thetext displayed in the widget.

Read/Write: RW

Value: String The string can be of any length but the visible part will depend on the dimensions of
the widget. May not contain binary data. Use the newline character sequence’\n' to
generate atext spanning multiple lines.

Applicable for : Button, Firm key, Panel

Additional info : -

left

Purpose: Determines the horizontal position of the widget.

Read/Write: RW

Value: Integer Range: -32768to0 32767

Applicable for : Button, Firm key, Panel

Additional info :

This member stores the number of pixels between the Ieft of the widget and the left side of the screen.
Negative values are allowed to place the widget (partly or completely) outside of the screen.

onHold

Purpose: Contains the function to be called while abutton is kept pressed.

Read/Write: RW

Value: Function A valid function, or null if no button hold behavior is desired (anymore).
Applicable for : Button, Firm key, Hard key

Additional info :

Example :

The callback function will be scheduled repeatedly every onHoldInterval milliseconds after the buttonis
pressed, until the button isreleased.

Note that when abutton is pressed for more than 30 seconds, the control panel will automatically release the
button. Thisisto prevent unwanted behaviour because of an object positioned on top of the control panel.

// Button script showing a counter from 1 to 10 in the button label while the button is pressed:

var counter = 1,

onHold = function() { label = count++; if(count > 10) onHold = null; } ;

onHoldInterval

Purpose: Define the button onHold repeat interval time. The default value is 1000, which means that when an onHold
function isdefined, it is called every second.
Read/Write: RW
Value: Integer Range: 0...32767. Theinterval timein milliseconds. If set to 0, the onHold function
will not be called anymore.
Applicable for : Button, Firm key, Hard key, Panel
Additional info : -
Example : // Button script showing aincreasing speed counter:
var counter = 1,
var limit = 10;
onHold = function() { label = count++; if (count == limit) { onHoldInterval /=2; limit*=2;} };
onRelease
Purpose: Program the function to be executed at the next button release.
Read/Write: RW
Value: Function A valid function, or null if no button release behavior is desired.
Applicable for : Button, Firm key, Hard key
Version 1.0 ProntoScript Developer’s Guide Page 61

~rontoscript Developer's Guide

Additional info : The function will be called once when the button is released.
Example : Example of abutton script that changes the button label when the button is rel eased:
| abel = "Pressed";
onRel ease = function() { |abel = "Rel eased"; };
tag
Purpose: Get the tag of thewidget.
Read/\Write : R
Value: String String containing the tag.
Applicable for : Button, Firm key, Hard key, Panel
Additional info : The tag isused to find the widget in the list of visible widgets or in the configuration file.
top
Purpose: Determines the vertical position of the widget.
Read/\Write : RW
Value: Integer Range: -3276810 32767
Applicable for : Button, Firm key, Panel
Additional info : The top member contains the number of pixels between the top of the widget and the top of the screen.
Negative values are allowed to place the widget (partly or compl etely) outside of the screen.
visible
Purpose: Allows hiding or showing awidget on the screen.
Read/\Write : RW
Value: Boolean True (visible) or false (not visible)
Applicable for : Button, Firm key, Panel
Additional info : -
width
Purpose: Determines the horizontal size of the widget.
Read/\Write : RW
Value: Integer Range: 1...640
Applicable for : Button, Firm key, Panel
Additional info : If the size is smaller than thewidth of the displayed image, theimage will be clipped. If the size is bigger,

the remaining space will be transparent.

Page 62

ProntoScript Developer’s Guide

Version 1.0

Instance methods

executeActions()

Purpose:
Parameters:
Return :
Exceptions :
Applicable for :
Additional info :

Executes the action list attached to the button, if any.

- ActionList error

Button, Firm key, Hard key

Thisisablocking function, so script execution will only continue after the action list has been completely
finished. If the action list contains ajump to another activity, the script will be aborted.

Note that executeActionswill fail if another action list is being played aready. When executing an activity
or page script thisismostly the case. To work around this problem, use schedul eAfter() to execute the
actions alittle later when the activity switch or page jump is finished.

getimage()

Purpose: Retrieve the image attached to the widget.

Parameters: Index Integer Theimageindex. A panel can have only oneimage (index 0)
and a button or firm key can have 2 images: one for the
released state (index 0) and one for the pressed state (index 1).
If index is omitted, O is assumed.

Return : Image An instance of the Image class representing the specified image
of the widget.

Exceptions : - Index is out of range

Applicable for : Button, Firm key, Panel

Additional info :

Animage cannot be created in a script. Instead you can copy it from one widget to another.

Example: Get an image from apanel in the gallery page of the current activity:
var ing = CF.w dget ("] MVAGE123", "GALLERY").getl|nage();
setimage()
Purpose: Change the image of the widget for a specific state (pressed or released).
Parameters: Img Image Theimage to be assigned to the widget state.
Index Integer Theimageindex. A panel can have oneimage (index 0) and a
button or firm key can have 2 images. one for the released state
(index 0) and onefor the pressed state (index 1). If index is
omitted, O is assumed.
Return : -
Exceptions : - Not enough arguments specified
- Argument is not an image.
- Index isout of range.
Applicable for : Button, Firm key, Panel

Additional info :

If the size of the new image is bigger than the value of the height and width properties, the image will be
clipped. If the size is smaller, the spaceoutside of the imagewill be transparent.

Example: Example of button showing an animation from the gallery page of the current activity.
It loads the i mages from the panelstagged ANIM1_0, ANIM1_1 ... ANIM1_9 successively:
var count = O;
onHol dl nterval = 100;
onHol d = function()
setl mage(CF.wi dget ("ANIML_" + (count % 10), "GALLERY").getlmage();
Version 1.0 ProntoScript Developer’s Guide Page 63

~rontoScript beveloper's Guide

The tags defined below have a special meaning. Avoid using them for your own widgets.

The following tags are defined for the firm keys:

Firm button Tag

1 (left-most) "PS_FIRM1"

2 "PS_FIRM2"

3 "PS_FIRM3"

4 "PS_FIRM4"

5 (right-most) "PS_FIRM5"

Hard button tags:

Backlight "PS_BACKLIGHT"
Channel down "PS_CHANNEL_DOWN"
Channel up "PS_ CHANNEL_UP"
Cursor down "PS_CURSOR_DOWN"
Cursor left "PS_CURSOR_LEFT"
Cursor right "PS_CURSOR_RIGHT"
Cursor up "PS_CURSOR_UP"
Guide "PS_GUIDE"

Home "PS_ HOME"

OK "PS_OK"

Menu "PS_MENU"

Mute "PS_ MUTE"

Page down "PS_PAGE_DOWN"
Page up "PS_PAGE_UP"

Power "PS_ POWER"

Volume down "PS_ VOLUME_DOWN"
Volume up "PS_VOLUME_UP"

Predefined activity tags:

Activity Tag
System activity "PS_SYSTEM"

The system page has also a special tag:
Page Tag
System page "PS_SYSTEM"

Debug widget tag:
Page Tag
Debug panel " PS_DEBUG "

Page 64 ProntoScript Developer’s Guide Version 1.0

Appendix C: Pronto font

The following tables list the contents of the Pronto font that is available on the control panel. These
special unicode characters can be put in a text using the \u prefix followed by the four-digit, hexadecimal
unicode number.

For example, consider the following button script:

| abel

"Press \uF087 to start the novie";

This will put the text "Press ? to start the movie" on the button label.

0

2

\l

0020

*| >
+|m
0
o
m

0030

0040

O.\)\-n

0050

0
@
P

0060

LS| >Z|Vv|-
o

0070

©

Qo | OBk |—|F

=|T|OWN

niomO|w|H|w

—~ |- 0O M P>
clo|Cimnl | o
<|=<|To|xlo
sSle|S 0N

X || X| I |oo|—~]| oo
N —| Nl
el N

S [D) B

— (31— |Zn

o

=

N
\l
] CO
o
O

00AO

|| o
w
I

A

00BO

o

00CO

00D0

00EO

00F0

|- vO xO .

0100

0110

0120

0130

0140

0150

0160

0170

Cl{O|v—O|U > x| B>

clndo|r|—lalalo || o Z{ >+ |—

c |~ |8 |Z|vQ|® || O] OB w|th| w

S|H|0|s || T|m|>| o 0| O >
S| = |Z2— |z || 0w Oy I=E K| o1
<[z |X|[T|M|O|o| B | O /|=~]--| @
<|C|A|s|~v—mO|a|o|Q|myy
Nlc|= || |—|o|o|c|o|Climy »| O] o] |<|—|<|—|o~|w©
N(Cl|™V—[—|mMO|c| | CyMY o o >
NS |0 ||| —|o|o|o|o|Cmy v
N[ICln|O|—|—|®|0|c|—|Ci—X[1]|0
NS |0 |o|r|—la|o|<|—|<{— &
N(CI|O|—|—|®O|OT|~| T X|@ m
OlS | v oV —la|al<:|—| | —ic

<|~|=|Z|x|=T|o|O

0190

—|C|H|RA|—||®O/m|>| o || O v|e| N

02C0

>
~J

02D0

0390

03A0

@)

03C0

0410

0420

0430

0440

INIESIEN) D)
OIS IECI RS BN
RIESIENIEN IR
RIFIESIENIES
RIBNES IR ES)
RIS IR IR R

05D0

NS N -0 RVIEN}

05EQ

RIESIESIEN IR Rt i]

INIENIENIES IRV IEN]

RIESIESIES IR RN

I IES IR IRSIES)

ERIESIESIEN IR IR
NIIES BN RNES)
NIFIENIENIES R
INIESIESIENIRNIES)
IR ESIRYES

Version 1.0

ProntoScript Developer’s Guide Page 65

™

T

?

.l.
%0

?

?

?
?
?
?
?
?
?
?
?
?
?
?

2010

2020
2030
20A0

2120
2200
2210

2220
2240
2260
25C0

FO020
FO30
FO40
FO50
FO60
FO70
FO80
FO90
FOAO
FOBO
FOCO
FODO

FOEO
FOFO
FBOO

Version 1.0

ProntoScript Developer’s Guide

Page 66

Further reading

[Flanagan] David Flanagan. Copyright © 2006, 2002, 1998, 1997, 1996, O'Reilly Media, Inc. ISBN 0-596-
10199-6. O'Reilly Media, Inc., JavaScript: The Definitive Guide, Fifth Edition.

Note: We strongly encourage you to get a copy of this book! For the Pronto development team it has
proven itself as a bible. When giving support to you, it can be most effective to refer to a particular
section or example in this book.

[JSLint] http://www.jslint.com/: provides tools to check your script for errors.

[Mozilla] http://developer.mozilla.org/en/docs/JavaScript: contains a very extensive reference and a guide
on the Core JavaScript 1.6, as well as a "re-introduction to JavaScript" as they call it.

Version 1.0 ProntoScript Developer’s Guide Page 67

CF - Configuration file

Editor - The ProntoEdit Professional program to create Pronto configurations
Firm key - The five physical buttons below the control panel screen

Hard button - The physical buttons of the control panel

Tag - The ProntoScript Name that can be specified in the editor for a widget
Widget - Graphical element on the screen. A button, panel or hard button

Page 68 ProntoScript Developer’s Guide Version 1.0

