
- Experimental and Preliminary -

Version 1.0 : 2008-06-13, Plugwise B.V. 1

Plugwise Template Engine

Titel Plugwise Template Engine

Version 0.95

Date 2008-07-15

Product Source/PTE

Author TVR

Notes This is a highly experimental feature and is not considered as required

functionality. There will not be any support from the Plugwise helpdesk.

Bugs Please report your remarks and bugs to helpdesk@plugwise.com

Changes 0.94: While loop statement added

Introduction

The Plugwise Source application has a built in single threaded lightweight web server with a
simple object oriented template engine. This web server can be used to expose information

on the Plugwise system and switch appliances remotely by means of HTML pages or XML

feeds.

Installation

The web server is part of the Source application and does not require a separate installation.

It is automatically started if it is enabled in the Settings window, the given port number is

available and the specified ‘www’ folder exists.

These settings can be bypassed by specifying an ini file in the command line with

/httpdini=” path to ini ”

Example:

; Example ini file
[server]
; port number to listen on
port=8080
; folder that contains the files to serve.
; it may be relative to the application startup fol der
root=www
; user name for authentication
; if left blank, no authentication is required
user=admin
; MD5 hash of the password for authentication.
; the default is 'admin'
password=21232F297A57A5A743894A0E4A801FC3

[settings]
; any parameter specified here is accessible within the scripts
; via the System.Settings array.
CompanyName=ACME inc.
CompanyColors=#ff00ff,#800080,#00FF00,#008000

- Experimental and Preliminary -

Version 1.0 : 2008-06-13, Plugwise B.V. 2

The Basics

Any file requested by a client (i.e. web server) that has one of the extensions ‘.css’, ‘.html’,

‘.txt’ or ‘.xml’ is parsed by the template engine and any text enclosed by ‘<%’ and ‘%>’ tags

is interpreted as statements. All characters outside these tags and files with other extensions

are literally passed through.

<html ><body >
<%
 $mytext="Hello world"
%>
<h1><%=$mytext%> </ h1>
</ body ></ html >

You can enclose multiple statements with the tags as long as they are separated by a line

break (end of line) or a semicolon ‘;’.

<html ><body >
<%
 $mytext="Hello world" // everything on this line behind the ’//’ is ignor ed.
 Echo "<h1>", $mytext, "</h1>"; $a=5; Echo $a
%>
</ body ></ html >

The default page for any folder is ‘index.html’.

Variables

Variables are dynamic and weak typed, what means that you do not need the declare them

and that they can change from one type to another depending on the last assignment except

for array elements, their type is determined at creation and will not change.

All variables are treated as objects although there is distinction between the value types

‘float’, ‘string’ and ‘bool’ and reference types like ‘array’ or ‘Appliance’. Value types have

their value copied from one variable to another, while reference types get only a reference

(pointer) to the object.

<html ><body >
<%
 $value1=1;
 $value2=$value1;
%>
Value1 = <% =$value1%>

Value2 = <% =$value2%>
<hr >
<%
 ++$value2;
%>
Value1 = <% =$value1%>

Value2 = <% =$value2%>
<hr >
<%
 $ref1={'One','Two'};
 $ref2=$ref1;
%>
Ref1[1] = <% =$ref1[1]%>

Ref2[1] = <% =$ref2[1]%>
<hr >
<%
 $ref1[1]='Changed';
%>
Ref1[1] = <% =$ref1[1]%>

Ref2[1] = <% =$ref2[1]%>
</ body ></ html >

The output will look like:

- Experimental and Preliminary -

Version 1.0 : 2008-06-13, Plugwise B.V. 3

Value1 = 1
Value2 = 1

Value1 = 1
Value2 = 2

Ref1[1] = Two
Ref2[1] = Two

Ref1[1] = Changed
Ref2[1] = Changed

When operators are used on 2 values of different types, the second value is converted to the

same type as the first value.

Array

An array is an indexed list of values (elements). Arrays can be associative what means that

an element can not only be addressed by its index (number) but also by its key (string), if it

has one. Single elements can be accessed by specifying the index or key surrounded by

square brackets, ‘[’ and ‘]’ following the array value. The zero based index is created

automatically and may change every time the array is modified. Keys are case insensitive,

are assigned by statements and are valid until the associated array element is removed from

the array. Elements in the same an array can be of different types.

An array is assigned by specifying the elements between curly brackets, separated by a

comma:

 $b={ 'One'=>'1', 2, 3, 'Four'=>'4' }

Or a single element:

 $b['Five']= 5

Operator Description Example Result

+
+=

Add one or more elements. $a={1}+{2,3}
$a+={4,5}

{0=>1,1=>2,2=>3}
{0=>1,1=>2,2=>3,3=>4,4=>5}

-
-=

Remove one or more elements.

If a key is given, the value is ignored.

$c=$a-{2,5}
$b-={'Two'=>"Don't care"}

{0=>1,1=>3,2=>4}
{'One'=>'1'}

== Is Equal to.

Two array are equal if they have the

same number of elements and all

values in the first array exists in the

second array and vice-versa. The

indices and/or keys are ignored.

$a=={'1'}
$a={3,1,2}
$b={1,2,3}
$a==$b

True

True

!= Is not equal to, reverse of ‘==’

Member Description Example Result

ClassName The class name of the

object

ContainsKey(key) True if the array contains

an element with key key

ContainsValue(value) True if the array contains

an element with value
value

Count Number of elements $a={"abc",5,"xy"};
$a.Count

3

First First element $a.First "abc"
GetUnique() Returns a copy of the

array minus the duplicate

elements

- Experimental and Preliminary -

Version 1.0 : 2008-06-13, Plugwise B.V. 4

Join(sep) Concatenate all the values

to one string using sep as

separator.

$a.Join(";") "abc;5;xy"

Keys Array of all keys. For

elements without a key,

the index is returned.

$b={'One'=>'1','Two'=>'2',7}
$b.Keys

{'One','Two',2}

Last Last element $a.Last "xy"

Values Array of all values. $b.Values {'1', '2',7}

Bool

Bool is short for Boolean and can have only one of two values: it is either ‘true’ or ‘false’.

Operator Description Example Result

== Is equal too $a==True False

!= Is not equal to $a!=False
! Logical NOT

&& Logical AND
|| Logical OR

bool ?expr1 : expr2 If bool equals True the result

of the whole expression will be

the result of expr1 . Otherwise

it will be the result of expr2 .

$f=4
$s=($f==4)? "Yes" : "No"

"Yes"

Member Description Example Result

ClassName The class name of the object

DateTime

A DateTime is a object which contains a specific date and time and is used for date and time

calculations. When converted to a float, the resulting float contains the number of seconds

since the Gregorian date 0001-01-01 00:00:00. When converted to a string the string has the

sortable format “YYYY-MM-DD hh:mm:ss”.

A DateTime is assigned to a variable using a constructor

$d=DateTime([expression])

Where expression is a float representing the number of seconds since the Gregorian date

0001-01-01 00:00:00 or a string containing a date in the sortable format “YYYY-MM-DD

hh:mm:ss”. If expression is omitted, DateTime() returns the current date and time.

Operator Description Example Result

+
+=

Add a date or a number of seconds

Note: Since the first date is ‘0001-01-

01’, you must add 1 to the number of

years, months or days you want to

add when using the string format.

$d=DateTime();
$d2=$d+DateTime("0010-01-01");
$d2+=3600;

"2008-06-11 16:28:38"
"2017-06-11 16:28:38"
"2017-06-11 17:28:38"

-
-=

Subtract a date or a number of

seconds. See ‘+’.

$d-=DateTime("12:00:00");

"2008-06-11 04:28:38"

== Is Equal to. $d.Date==DateTime("2008-06-11") True
!= Is not equal to, reverse of ‘==’ $d!="2008-06-11" True

Member Description Example Result

ClassName The class name of the object
Date The date part $d=DateTime();

$dd=$d.Date;
"2008-06-11 16:28:38"
"2008-06-11 00:00:00"

Day The day of the month $dy=$d.Day; 11
Hour The hour of the day $h=$d.Hour; 16
Minute The minute of the hour $mi=$d.Minute; 28
Month The month of the year $mo=$d.Month; 6

- Experimental and Preliminary -

Version 1.0 : 2008-06-13, Plugwise B.V. 5

Second The second of the minute $s=$d.Second; 38
Time The time part $t=$d.Time; "0001-01-01 16:28:38"
TotalSeconds The seconds passed since 0001-

01-01 00:00:00

$s=$d.TotalSeconds; 63348798518

UTC Convert to UTC Time $dd=$d.UTC "2008-06-11 14:28:38"
WeekDay Day of the week based on Sunday

as day ‘0’

$wd=$d.WeekDay 3

Year Year of the date $y=$d.Year 2008

Float
A float represents a floating point numerical value and is the only numerical type the engine
supports. All numerical values are converted to floats. When an integer is required, the float

is rounded to the nearest integer.

Operator Description Example Result

+
+=

Add $f=1+0.5
$f+=1
$f=5+"4"+3
$f="5"+4

1.5
2.5
48 (! 5 + "43")
"54"

++ Increment by 1 ++$f 11
-

-=
Subtract $f=20-2

$f-=10
18
8

-- Decrement by 1 --$f 7
== Is equal too 1.5==2 False
!= Is not equal to 1.5!=2 true
> Greater than (case insensitive) 10>4 true
< Less than (case insensitive) 10<4 false

>= Greater than or equal to 2>=2 true
<= Less than or equal to 10<=4 false
*

*=
Multiply $f=5*4

$f*=-3
20
-60

/
/=

Divide $f=20/5
$f/=2

4
2

%
%/

Remainder (modulus) $f=20%7
$f%=4

6
2

&
&+

Binary AND $f=63&36
$f&=8

36
0

|
|=

Binary OR $f=13|7
$f|=16

15
31

^
^=

Binary exclusive OR (XOR) $f=15^7
$f^=15

8
7

Member Description Example Result

ClassName The class name of the object

String

A string is the most common variable type since it normally contains readable text. Strings

must be enclosed by single ‘'’ or double ‘"’ quotations marks. Comparison between strings

are case insensitive. When using double quotes special characters can be escaped using the

back slash ‘\’: \f (form feed), \n (new line), \r (carriage return), \t (tab), \\ (backslash), \"

(double quote). When using single quotes, only the single quote character can be escaped.

Operator Description Example Result

+
+=

Concatenate 2 strings $s="a"+"b"
$s="4"+5
$s=4+"5"
$s+="a"

"ab"
"45"
9
"45a"

-
-=

Remove all occurrences of the

second string from the first.

$s="Hello World"-"l"
$s-="o"

"Heo Word"
"He Wrd"

== Is equal too "ab"=="ab" False

!= Is not equal to "ab"!="ab" True

> Greater than "ac">"ab" True

- Experimental and Preliminary -

Version 1.0 : 2008-06-13, Plugwise B.V. 6

< Less than "ac"<"ab" False

>= Greater than or equal to "ab">="ab" True

<= Less than or equal to "ac"<"ab" False
*

*=
Concatenate a string multiple times $s="-"*4

$s*=2
"----"
"--------"

[index] The character at position index $s="abcdef"
$s[3]

"d"

Member Description Example Result

ClassName The class name of the object
IndexOf(string) The zero based start position

of the first occurrence of
string

$s="Hello world";
$s.IndexOf("l");

2

LastIndexOf(string) The start position of the last

occurrence of string

$s.LasIndexOf("l"); 9

Length The length $s.Length 11
Lower The lower case version $s.Lower "hello world"

MD5 The MD5 hash of the string
Replace(string 1,
string2)

Replaces each occurrence of

string1 with string2

$s.Replace("o","0") "Hell0 w0rld"

Split(string
[, int])

Split a string on separator

string to an optional

maximum of int

$s.Split("l");

$s.Split("l",2);

{0=>'He',1=>'',
2=>'o wor',3=>'d'}
{0=>'He',1=>'lo world'}

Substring(int1
[, int2])

The string part starting from

int1 optionally with a

maximum length of int2

$s.Split(6);
$s.Split(6,2);

"world"
"wo"

Trim() Remove white spaces from

beginning and end of string

" Hello\n".Trim()

"Hello"

Upper The upper case version $s.Upper "HELLO WORLD"
UrlDecode() Decodes the URL endode

string

UrlEncode URL encodes the string

Keywords

=

<%= expression %>

The equals character ‘=’ is not really a keyword but an assignment operator. However, if it

immediately follows the opening tag ‘<%’, the result of expression is converted to a string

and passed through to client.

Example Output

<%="Hello world" %>

<% $a=5 %>
<%=$a%>

Hello world
5

Block, /Block

<% Block string %>
…
<% /Block %>

Defines a script part (block) with name string to be used (executed) later with Write. The

part can contain anything except another block definition. Block and /Block must be

enclosed with their own tags.

Blocks are stored in the array System.Blocks

Example Output

- Experimental and Preliminary -

Version 1.0 : 2008-06-13, Plugwise B.V. 7

<% Block "number" %>
The number is <%=$a%>

<% /Block %>
<%
 $a=5; Write System.Blocks["number"];
 $a=3; Write System.Blocks["number"];
%>

The number is 5
The number is 3

Echo

Echo string [, string] …

Writes to output. The result of expression string is written to output. Multiple expressions

can be written by separating them with a comma. This is faster than using the ‘+’ operator

and does not cause unintentional type conversions

Example Output

<%
 Echo "Hello world!"
%>

Hello world!

Exit

Exit [string]

Terminates the script immediately and optionally outputs the message string .

Example Output

<%
 Echo "Hello world!"
 Exit;
 Echo "This is not shown"
%>

Hello world

ForEach, [Continue], [Break], /ForEach

ForEach array

Loop
/ForEach

ForEach is a loop statement. For each element in the array resulting from expression

array , Loop is executed. Within Loop the execution of the current loop can be stopped

by Break and Continue ; the first will exit the ForEach statement and continue the

script after /ForEach , while the latter will restart the loop with the next element, if there

is one, from the array. Break and Continue are optional and can occur more than once

within Loop .

Within Loop the index, key and value of the current element are copied to the variables

$_Index , $_Key , resp. $_Value .

ForEach constructs can be nested.

Example Output

<%
$a={'1'=>'One','2'=>'Two','3'=>'Three','4'=>'Four'}
ForEach $a
 if $_Index==1
 continue
 /If

$a[0] = {1=>One}
$a[2] = {3=>Three}

- Experimental and Preliminary -

Version 1.0 : 2008-06-13, Plugwise B.V. 8

%>
$a[<%=$_Index%>] = {<%=$_Key%>=><%=$_Value%>}

<%
if $_Value=='Three'
 break;
 /If
/Foreach
%>

Format

Format name=format

Format gives a powerful method for outputting certain info in a consistent

layout. Each time a value is written to output with <%= value %> and with

Echo , it is formatted using the specified format . For formatting the rules of

the .Net method String.Format() are used.

Example Output

<%
 $a={'a', 'c', 'd'}
 $f=1.574

 Format "Float.f" As "{0:0.0}"
 Format "Float" As "{0:0.00}" // All other floats!
 Format "Array.Count" As "'{0}'"

 Echo "$a.Count=",$a.Count,"
"
 Echo "$f=",$f,"
"
%>
$a.Count=<%=$a.Count%>

$f=<%=$f%>

$a.Count=3
$f=1.574
$a.Count='3'
$f=1,6

If, [ElseIf], [Else], /If

If bool1
 Part1

 [ElseIf bool2
 Part2
 …]
[Else
 Partx]
/If

‘If ’ is a conditional statement. If expression bool1 results in True, then Part1 is

executed, the rest is skipped up till the /If . If bool1 results in False then Part2 is

executed only if bool2 results in True, the rest is skipped up till the /If . The ElseIf

clause can be repeated as many times as you want. If neither the If -expression and none

of the ElseIf expressions were True, the Else clause Partx is executed. The ElseIf

and Else clauses are optional.

If ’s can be nested.

Example Output

<%
 $a=3;$b=1
 Echo "$a is "
 if $a==2
 Echo "Two"
 elseif $a==3

$a is Three
$b is One

- Experimental and Preliminary -

Version 1.0 : 2008-06-13, Plugwise B.V. 9

 Echo "Three"
 if $b==1
 Echo " $b is One"
 /if
 else
 Echo "Some other value"
 /if
%>

While, [Continue], [Break], /While

While bool

Loop
/While

While is like ForEach a loop statement, but instead of looping through a predetermined

number of array elements it loops until the given Boolean expression bool , results in

False . Within Loop the execution of the current loop can be stopped by Break and

Continue ; the first will exit the While statement and continue the script after /While ,

while the latter will restart the loop at the point of evaluating expression bool . Break and

Continue are optional and can occur more than once within Loop .

While constructs can be nested.

Example Output

<%
$a={'1'=>'One','2'=>'Two','3'=>'Three','4'=>'Four'}
$ix=$a.Count
While $ix>0
 --$ix
 if $ix==1
 continue
 /If
%>
$a[<%=$ix%>] = {<%=$a[$ix]%>}

<%
 If $a[$ix]=='Three'
 break;
 /If
/While
%>

$a[0] = {One}
$a[2] = {Three}

With, /With

With context
…
/With

Sets the current context to the result of the expression context. The context is the value to

witch undetermined members are associated. This is especially useful when working with

blocks. You can use the same block for objects that have the same member names as used

within the block.

Example Output

<%
 $a={'d'}
 $b={'a', 'c', 'd'}
 With $a
 Echo .Count,"
"
 /With
 With $b
 Echo .Count,"
"
 /With
%>

1
3

- Experimental and Preliminary -

Version 1.0 : 2008-06-13, Plugwise B.V. 10

Write

Write string [, string] …

Writes to output. The difference with Echo, is that with Write the result of expression string

is parsed by the engine as if it was a template file. This is why blocks should be written to

output with Write and not with Echo.

Example Output

<% Block "number" %>
The number is <%=$a%>

<% /Block %>
<%
 $a=5; Write System.Blocks["number"];
 $a=3; Echo System.Blocks["number"];
%>

The number is 5
The number is

Engine objects

System

System is the main object of the template engine.

Method Description Example Result

Blocks Array of all the defined blocks See Write
Date String with current local date System.Date 16-06-2008
Path Local path to the server root folder System.Path C:\Program Files\Plugwise\Plugwise

Source\ www
Settings Array with all the name-value pairs

as specified in the ini file under the

[Settings] category.

Time String with current local time System.Time 21:37:33
Version Version string of the engine System.Version 0.9

Math

Math is a static object is has no value, only members and is used for mathematical

calculations.

Method Description Example Result

Abs(float) The absolute value of float $d=Math.Abs(-5); 5
Ceil(float) The smallest integer greater than or

equal to float

Math.Ceil(-5.3)
Math.Ceil(5.3)

-5
6

E The natural logarithmic base e
Floor(float) The largets integer less than or equal

to float

Math.Ceil(-5.3)
Math.Ceil(5.3)

-5
6

Max(float1 ,
float2)

The larger of 2 values

Min(float1 ,
float2)

The smaller of 2 values

Pi The ratio of the circumference of a

circle to its diameter: π.

Pow(float1 ,
float2)

The power of float1 to float2

Round(float) The rounded value of float
Sign The signing of a number:

-1: float <0

 0: float==0

 1: float>0

- Experimental and Preliminary -

Version 1.0 : 2008-06-13, Plugwise B.V. 11

Request

Request gives access to the HTTP request information.

Method Description Example Result

Base Base url of the request Request.Base 'http://localhost:8080'
Cookies Array of client cookies
Get Array of values from the query string
Headers Array of the HTTP headers of the

request

Request.Headers[
'host']

'localhost:8080'

Post Array of form values from the POST

data. Currently only content type '
application/x-www-form-
urlencoded ’ is supported.

Query Full query string of the request Request.Query '?cmd=test'
RawPost String with the raw POST data.
SendCookie(name,
value)

Add or replace a cookie to/in the

response

SendHeader(name,
value)

Add an HTTP header to the response

Url Url of the request Request.Url 'http://localhost:8080/test.
html'

User Authenticated user name Request.User 'admin'

- Experimental and Preliminary -

Version 1.0 : 2008-06-13, Plugwise B.V. 12

Plugwise Objects

Plugwise

The Plugwise object is the root object of all the Plugwise system objects.

Method Description Example Result

Appliances Array of all the appliances Plugwise.Appliances["TV"].N
ame

"TV"

ClassName The class name of the object
Groups Array of all the groups
ImagesPath Virtual path to dynamic images <img

src="<%=Plugwise.ImagesPath
%>32/<%=.ImageName%>.png">

<img
src="/pwimg/32/a
ppliance.png">

Language Current language code of

application

Plugwise.Language "nl"

Modules Array of all the modules
Rooms Array of all the rooms
Version Application version of Source

Appliance

The Appliance object is the representation of the ‘Appliance’ entity in the application.

All returned information is ‘last known’, not necessarily ‘current’. This prevents page delays

as a result of slow communication or offline modules. Immediately after the last known info

is returned, a request to the application is queued to refresh the info, so that the next time

the information is requested, an updated version is returned.

Method Description Example Result

Appliance(id) Constructor. Returns the

appliance with id id

$id=Plugwise.Appliances[0].Id
Appliance($id).SwitchOff()

ClassName The class name of the object
DoNotSwitchOff True if the appliance is flagged

not to switch off.

Id Internal ID of the appliance
IsOff True if the (module of the)

appliance is switched off.

IsOn True if the (module of the)

appliance is switched on.

ImageName Name of the virtual image file
Module Module to which the appliance is

attached

Name Name of the appliance Plugwise.Appliances["TV"
].Name

"TV"

PowerState Power state of the appliance: ‘on’

or ‘off’

PowerUsage Last known power usage
SwitchOn() Switch the (module of the)

appliance on

SwitchOff() Switch the (module of the)

appliance off

StatusImageName Name of the virtual image that

includes the status

<img
src="<%=Plugwise.ImagesP
ath%>32/<%=.StatusImageN
ame%>.png">

<img
src="/pwimg/32/appliance_
on.png">

TotalUsage Total power usage since the last

counter reset

Type Appliance type
TypeText Appliance type translated to the

current language

Module

The Module object is the representation of the ‘Module’ or ‘Plug’ entity in the application.

- Experimental and Preliminary -

Version 1.0 : 2008-06-13, Plugwise B.V. 13

All returned information is ‘real time’, so using the Module object can cause page delays,

since execution of the template is halted until the requested information is received from

the module.

Method Description Example Result

Appliance The assigned appliance
ClassName The class name of the object
CloseRelay() Close the relay; switch the

connected appliance on

Id Internal ID of the module
ImageName Name of the virtual image file
MacAddress MAC address (hardware address)

of the module.

Name Name of the module
OpenRelay() Open the relay; switch the

connected appliance off

PowerUsage Last known power usage
RelayState Switch state of the relay: ‘open’

or ‘closed’

StatusImageName Name of the virtual image that

includes the status

<img
src="<%=Plugwise.ImagesP
ath%>32/<%=.StatusImageN
ame%>.png">

<img
src="/pwimg/32/appliance_
on.png">

Status Status of the module: ‘online’,

‘offline’ of ‘unknown’

Type Module type id
TypeText Module type translated to the

current language

Group

The Group object is the representation of the ‘Group’ entity in the application.

Method Description Example Result

Appliances Array of appliances which are

member of the group

ClassName The class name of the object
Id Internal ID of the group
Name Name of the group

Room

The Room object is the representation of the ‘Room’ entity in the application.

Method Description Example Result

Appliances Array of appliances which are

assigned to the room

ClassName The class name of the object
Id Internal ID of the room
Name Name of the room

- Experimental and Preliminary -

Version 1.0 : 2008-06-13, Plugwise B.V. 14

General remarks

Operator precedence

The engine does not (yet) support operator precedence; i.e. ‘multiply’ ‘*‘ normally has

precedence over ‘add’ ‘+’. Instead expressions are evaluated from right to left. Use round

brackets to assure the correct order in calculations.

Example Result

$a=5+4*3 17
$a=4*3+5 32
$a=(4*3)+5 17

Forms

When using HTML POST forms, you can combine form fields in an array by using square

brackets in the field name:

<html ><body ><%
// set to posted values or an empty array
$cks=Request.Post.ContainsKey('ck')?Request.Post['c k']:{}
echo $cks // Show the contents of the array
$flds={'One','Two','Three'}
%><form method ="POST" ><%
foreach $flds
 $v='chk_'+$_Index
 // keep the checkboxes checked that were checked by the user
%><%=$_Index%>
 <input type ="checkbox" name="ck[]" value =" <%=$v%>" <%=$cks.ContainsValue($v)?'
checked':''%> >
 <% =$_Value%>
<%
/foreach
%><input type ="submit" Value ="Submit">
</ form >
</ body ></ html >

You can also use keys. Note that here the keys do not require to be unclosed in quotation

marks:

<html ><body ><%
// set to posted values or an empty array
$cks=Request.Post.ContainsKey('ck')?Request.Post['c k']:{}
echo $cks // Show the contents of the array
$flds={'1st'=>'One','2nd'=>'Two','3rd'=>'Three'}
%><form method ="POST" ><%
foreach $flds
 // keep the checkboxes checked that were checked by the user
%><%=$_Index%>
 <input type ="checkbox" name="ck[<%=$_Key%>]" value =" <%=$_Value%>"
<%=$cks.ContainsKey($_key)?' checked':''%> >
 <% =$_Value%>
<%
/foreach
%><input type ="submit" Value ="Submit">
</ form >
</ body ></ html >

