pranto::

<script>

€D Developer’s Guide

prénto PHILIPS

ProntoScript Developer's Guide

ProntoScript Developer's Guide
Koninklijke Philips Electronics N.V.

Version 1.3.9
2009-12-10T16:46:16+01:00
Copyright © 2006, 2007, 2008, 2009 Koninklijke Philips Electronics N.V.

Abstract

The next generation of the Pronto Professional control panels provide the ability to use Pr ont oScr i pt scripts,
based on the popular JavaScri pt scripting language.

This developer guide describes the features ProntoScript provides, and can be used when developing scripted
Control Panel configurations.

Conditions to the use of the Pronto Script Developers Guide

1. Pronto Script Developers Guide and its documentation (hereafter “PSDG”)

The PSDG has been written by Philips for owners and users of Pronto products as guidance to develop new software-modules in Pronto
Script. The PSDG is destined to be used only by persons, who are professional users or installers of Pronto products and who are trained
to use the PSDG to develop software-modules in Pronto Script (hereafter “User”).

2. Intellectual property and ownership

The PSDG is intellectual property of Philips. By using the PSDG User agrees that the PSDG is, shall be and shall remain the intellectual
property of Philips. User shall immediately cease using the PSDG upon first demand of Philips.

3. License grant

Under its intellectual property Philips herby grants to User a royalty-free, non-exclusive, non-transferable license solely to use the PSDG
as guidance to develop software-modules in Pronto Script. The rights of User are limited to the foregoing. By using the PSDG User accepts
the preceding license grant and acknowledges that the PSDG constitutes a valuable asset of Philips. Accordingly, except as expressly
permitted under the license grant, User agrees not to: otherwise use the Philips Intellectual Properties; modify, adapt, alter, translate,
disassemble, re-create, copy, decompile, reverse engineer, or create derivative works from the PSDG, Pronto products and/or the Pronto
Script, or; sublicense, lease, rent, or otherwise transfer the PSDG to any third party.

4. Warranty and indemnification

Philips provides the PSDG “as is” as courtesy to User, “as is” means that Philips provides the PSDG without any warranty or support. User
is allowed to use the PSDG, accordingly the license grant, at its own risk and responsibility. By using the PSDG User indemnifies Philips
for all claims by any party caused by or in connection with the use of the PSDG by User. Furthermore User shall not hold Philips liable for
direct, indirect, special, consequential or incidental damages, including but not limited to lost profits, business interruption, or corruption
or loss of data or information, caused by or in connection with the use of the PSDG by User.

ProntoScript Developer's Guide

Table of Contents

Preface .ot XV
1. Using this gUIAE ...oiuiii e XV
2. WHhat's NeW N 1.3 oot XV
3. What's New in 1.2 oo XVi
4. What's new in 1.1 oo XVi

1o INErOAUCTION .uuiiiiiiiii ettt e e e e e eaa 1
1.1, WY ProntoSCriPt?c..euniiiei e e e e 1
1.2. A SImPple BULEON SCIRIPE ...cuniiiii e eaa 1
1.3. ProntoScript fEAtUresc..iiuniiiiii et 2

1.3.1. ReguUlar eXpreSSionsccuuiiiniiueiuei ettt 3
1.3.2. EAX et e 3

2. COrE JAVASCIIPE . euetn ittt ettt et et et e et et et et e et e et e et et et et et e et e et e eaeen e e et eans 7

2.0, Variables ...oouuiiiiiii et 7

2.1.1. Primitive LYPES .ueeniineiieii ettt ettt e e e 7
2101 NUMDEIS it 7

2112, SEPINES ittt et eans 7

2.1.1.3. BOOIGAN ...oiiiiiiiiiiiiiici e 8

2120 ATTAYS et ettt ettt eb e e e e 8

2.2, OPEIALOIS ..euneenein ettt et ettt et et e et et et e et e et et e th e ta e et e et et e tn e eaneeaneas 8
2.2.1. ArithmetiC OPEIratorsScuueuuiin ettt ettt et et e e e e e eenaes 8
2.2.2. COMPAratiVE OPEIALOIS ...ceuueeneuneetnetunetn et et eeua et ettaettetnetneeneeeneeanaenns 9
2.2.2.1. Assignment OPerator =ciuuiiuieieiiieiieei ettt e e e 9

2.2.2.2. Equality Operator ==ccuiiiiiiiiiieii ettt et 9

2.2.2.3. Identity OPerator === ... ittt ettt ettt 9

2.2.3. BitWiS@ OPEIators ..c...cuuiiiniiieiie ettt ettt ettt e ea e eans 10

2.3. Statement blOCKSciiuuiiiiiiiiiiiiii e 10
2.4, Control fIOWciuuiiiiiiiiii e 10
241, /RISE et 10
2.4.2. switch blockscoouiiiiiiiiiiiii 1"
2.4.3. While TOOPS ...uniiiiieii e 12
244, O TOOPS -.eeniieii ettt 12
2.4.5. break StatemMENTccouuiiiiiiiiiiiiiii it 12

2.5, EXCEPLIONS ..eniineiieii ettt ettt ettt et et e e e et et e e et et et et e et eaaae 12
2.6. FUNCLIONS ..eouiiiiiiiiiiic ittt 13
2.7, ODBJEEES .ttt ettt e e eans 13
2.8. BUilt-in fUNCLIONSuiiiiiiiiiiiiii e e 14
2.9. BUIlt-in ClaSSES ...ceuviiiiiiiiiiiiii e 15
2.9.1. Regular EXPressionscouuiiuiiuiiieicie e 16
2.9.2. Math ODJECE eunieiiie e 16

3. WVIAEES ettt e e e 17

30 PaN€ls ooeniii e 18
3.1.1. Change the label ... 18
3.1.2. Change the POSITIONc.uiiuiiiiiii ettt eaaee 20
3.1.3. Hide and show ..o 20
3.1.4. Label aPPeAranCec.uieuniiuiiiiei et 20
315, SIZE et 21
3.1.6. Changing the IMAageoceuiiiiiiiiiii et e e 21
3.1.7. Modifying panel Colorsccoviiiiiiiiiiiii e 22
3.1.8. Changing background transparencycoceeuieiiiiiiiiiiiiiniiineieeeeane, 22

3.2 BULEONS ..einiiiiiiiiii ettt ettt ettt et e e e e e e 22
3.2, BULEON SCIIPELS «.ueneiiiii ettt et et ettt et et et e et e et e et et et een e eaneeaneenns 22
3.2.2. Press and releasecoouviiiiiiiiiiiiiiiiiiiin e 23
3.2.3. CONLINUOUS PIreSSESeuniiuneinetn et et ettt ett et et et ean et eenetnetnaeanees 24
3.2.4. MOLIONS .euniiiiiiiii ettt 24

ProntoScript Developer's Guide

3.2.5. Button colors and iMagesc.oeeuuieiiiiiiiiiiiiei e e 25

3.3. Hard BULLONSuiiiniiiiiiiii i 25

34, FIrM KEYS ettt enne 25

3.5. Dynamic WIdEETSoeuuiimiiiiiii ittt eas 26

4. ACION LISTS L.uiinniiiiiiiiii i 27
4.1. Execution action liStSccoeiuiiiiiiiiiiiiiiiiiii 27

4.2. Reusable Macrosccouuiiiiiiiiiiiiiii i 28

5. TIMEIS 1o e 29
5.1, BIOCKING WAL «..eeniiiiiiieiie ettt eens 29

5.2, Page tIMEI .couiiiii ettt et eaa e 29

5.3, SChedUIEATFLEr() .eeuneeeiiiii ettt e 30

5.4. Behavior during sleep modecoouiiiiiiiiiiii e 30

6. Levels, scope and lifetimecc.oiiuiiiiiiiii e 33
6.1, LeVels ..ooeniiiii 33

6.2, SCOPE .ttt ettt ettt an e ans 33
6.2.1. LOCAl SCOPE ..veiiiiiiniei ettt e 33

6.2.2. Page SCOPE ...enniiieie et 33

6.2.3. ACLIVILY SCOPE ..ceuniiniiiniii ittt ettt ettt ettt e e ean e enaeenaeenaeanaee 33

6.2.4. System globals ..ot 33

6.3. LIifetimeoiiiniiiiiii i 33

7. Activities and Pagesco.iiiiiiiiiiii e 35
710 ACLIVILY SCIIPT enneiiniiiiit ittt ettt ettt ettt et e e e e e eaaeeneeenaennaens 35

A I B O L TP ON 35

7.1.2. HOME QCLIVILY ovneiniiiiii i e et eeaees 35

713, Rotary Wheeloni e 35

7.1.4. Advanced rotary wheel examplecccoiiiiiiiiiiiiiiiiii e 36

7.2, Page SCIIPL -eeniiiiieii ettt ettt ettt ettt et e e e eaaee 37
T2, USAZE ettt e ena e 37

722, Page 1abeloonniinii e 37

7.2.3. HOME PABE oonieiiiiiie e 38

7.2.4. Jump to aNOtEr ACLIVILYceuveuuiiuniiiniiiiiieieei e e e e enaeenaees 38

7.2.5. Multiple page jumps within an activityccceeeiiiiiiiiniiiiiiiiiiii e 38

8. EXTENAEIS ...oiiiiiiiiiiiiii i 39
8.1, CReXtender] T «ceuieeniiiii ittt e eeaee 39

8.2, Serial POILS ..enneeniiiii et enee 39
8.2.1. Configuring the serial POrtccoviiiiiiiiiiiiiiiii e, 39

8.2.2. Sending and reCIVINGeeuiiniiiiiiiii et 40

8.2.3. AsyNnchronous OPEerationc.cveuuieuniineinniiineieeieei ettt eeneeeneeaneenns 40

8.3L INPULS ettt ettt ettt ettt et e et e e e e 41
8.3.1. Getting the STATEoeeuiiiiiiiiii ittt et e e e 41

84, REIAYS ..ttt e 41

8.5, LiMitationsccouuiiiiiiiiiiiiiiiiiii i 41

9. LIBrariescoouiiiiiii s 43
9.1, USING @ [IDraryooeniiniii e 43
9.1.1. Attaching a lIBrary ...c..oooeieiiiiii e 43

9.1.2. Attaching a library globallycooiiiiiiiii e 43

9.1.3. Loading @ lbraryccouieiniiiiiii e 43

9.1.4. Manually loading a libraryccooiiiiiiiiiii e 44

9.2, Installing @ lBraryoou i 44
9.2.1. Version Controlcooiiiiiiiiiiiiiiiiiii 44

9.3. Creating @ lBraryc..ooeniiiiii i 44

9.4. Protecting liDrariesco.oceuiiniiiniiiii e 45

9.5. Library example: Currency CONVErterc.cveuuiiuniiiiiieiiieieeieeneeneeneenennnens 45

10. Network commUNICAtIONviiiiiiiiiiiiiiiii e 51
10.1. TCP CONNECLIONS ...ivuniiiiiiiiiiiiii it 51
10.1.1. Synchronous OPerationccceueeeuieuniiiniiieiineiree e eeneeneeneenennnes 51

10.1.2. Asynchronous OPeration.cc.ceeueeuriinriunieineeieieeieieeneereenaeenaees 52

ProntoScript Developer's Guide

10.1.3. Reusing TCPSOCKEt INSTANCESceevvuunieiiiiieeeiiiieeetiie e et e eeeieeeeees 54

10.2. UDP cOMMUNICATION ...euuiiiiiiiiiiiiiii ittt ettt e e e e eeneenns 54
10.2.1. Sending UDP Packetsc.cceuuiemimmiimuieiiiieii et ee e eeneennenns 54
10.2.2. Receiving UDP packetsccviuuiiiiiiiiiiiiiiiiiii e 54
10.2.3. MUIICAST eeeeiiiiiii e 55
10.2.3.1. Sending multicast datagramsccccceoveiiiiniinieeieiieiieeieeenanes 55

10.2.3.2. Receiving multicast trafficcooveiiiiiiiiiiiii 55

11. Getting eXternal IMAZES ...c..oiuuiiiii ittt ettt et e een e e e ea e en e e eennens 57
12. ProntoScript ModUIESsc..iiiiiiiii e 61
12.1. Creating a ProntoScript Moduleccoouiiiiiiiiiiiii e, 61
12.1.1. DeSign an aCtIVILY ...eeuieeniiniiieieei ettt ee e en e e 61
12.1.2. Using hidden pages for easy configurationc...ccceeiieiiiiiiiiinnennnennns 61

12.2. Publishing a ProntoScript Modulecocooiiiiiiiiiiiii e 62
12.2.1. Publish as XCF fileoiiiiiiiiiiiiiii e 62
12.2.2. Publish as XGF fileccoooiiiiiiiiiiiiii e 62
12.2.3. Publish as GEF filecc.ooiiiiiiiiii e 62

12.3. Using a ProntoScript Modulecooooiiiiiiiiii e 62
12.3.1. If it was published as XCF filecoiiiiiiiiiiiiiii e 63
12.3.2. If it was published as XGF fileccooiiiiiiiii e, 63
12.3.3. If it was published as GEF filecccoooiiiiiiiiii e 63
12.3.4. Configuring the added ProntoScript Modulec..ocoiiiiiiiiiiini . 63

13. EXCEPLiONal SCONAIIOS .. cuuiiiniiiiiiiii ittt e e e e e e 65
13.1. OUL Of MEMOTY «eeniiiiii ittt et e e et et ee e e eaneeanee 65
13.2. NeSted SCIIPLING «..vvuteiniiiiiieie ettt ettt e et e et e e e e e e eannes 65
13.3. INfINILE SCIIPLS ..evniiniiiiii ettt e e e e e 65
13.4. Invalid argUmMENTS ...c..iiuniiiiiiiie ettt et et et e e e e e e enaee 65
13.5. SCript EXCEPLIONS «..eceiiiiiii it 65
14. DebUEING YOUI SCIIPE ..euuiiniiiiii ittt ettt ee et et et een e ean e enneenaeenaeennees 69
14.1. DebUg WIdZEL «...enniiiiiii ettt e 69
T4.2. SYStEMLPIINT() -.eennernine ittt ettt ettt et e et e en e e e e VAl
14.3. ProntoScript ConSOlec..oeuuiiiiiiiei et e 72
14.4. ProntoScript DEbUEEErc..viuiiiiiii i 73
1441, TOOIDAr ..o 73
14.4.2. EXplorer WiNdOWcouiiiiiiiiiii et 74
14.4.3. SCript WINAOWS ...coniiiiiiii ittt e eaaee 74
14.4.4. Breakpoints WINAOWc..coouiiiiiiiiiii i 75
14.4.5. Watches Windowccooiiiiiiiiiiiiiiiii 75
14.4.6. StACk VIEW oooeiiiiiiiiiii e 75

A. ProntoScript Classes Description (ProntoScript API)cciiiiiiiiiiiiii e, 77
AL ACHVILY ClaSS oeneeii e 77
A 1.1, INSLANCE PrOPEItiES ..vuuiiiniiiiiiiii ettt et ea e enns 77
A1 actiVityuabel ..ooooeiiiiiiiie 77

A2, ACHT VI EYAZ toiniiiiiiie e 78
A1.1.3.8CHT VI EY.ONENLIY Lo 78

Y I B o YA R oY = S 78
A11.5.8CtT Vit Y.ONROLANY L.oiiiiiiiiiiiiiiieeece e 79

A1.1.6. ACLT Vi L Y.ONSIEEP oeiieiieiiiiiee e 79
AT117.aCt T Vi tY.ONWAKE ..covniiiiiieeeie et e e 79

A1.1.8. aCt i Vit y.rotarySoundc..ovveiiiiiiiiiiiiie e 80

A1.1.9. acti vi ty.wifiEnabledcoooviiiiiiiiiiii e 80

A1.2. Class methodsoooiiiiiiiiiii 80
A1.2.1. Activity.scheduleAfter()cooveuieiiiiniiiii e 80

A.1.3. Callback functionsccoeeiiiiiiiiiiiiiiiii 81
A131. 0nEntryCal | backoooiiiiiiiii s 81

A132. onExit Cal | back ... 81

A1.33. 0onRotaryCal | backcccooviiiiiiiiiiiecer e 82

A1.34. 0nSl eepCal | back ...o.coiiieiiiii s 82

ProntoScript Developer's Guide

A1.3.5. onVakeCal | backcooooviiiiiiiiiii e,
A 1.4, Instance MEthodscouiiniiiiiiiiiii e e
A141.ACHT VI EY.PAZE() -uneerrrineeiiiiee ettt
A1.42.aCtT VI T Y.WIAZEL() wevnreiiiieeiiiiie et
A2, CF CIaSS oottt aas
A.2.1. Class PrOPEITIES ...c.ueeuriuntein ittt ettt ettt e eeneeneen e e enneannes
A211. CReXENErceiiiiiii i e
A2.2. Class MELNOAScuuiiiniiiiiiiiiti et
A2.2.1. CRACHVITY() «evnnerrnneernneeii ettt et ett et e e et e et e et e eeneeenaeeees
A2.2.2. CEPAGE() wuueevnnetnneeeiee ittt ettt ettt et e e e
A2.2.3. CEWIZEE() «eueerneenneiii ettt ettt e ee et e e e eeas
A.3. DIagnostiCs Class ...c..ieuneinieiniiiiii e eens
A.3.1. Class MELNOAScuuiieiiiiiiiii et
A.3.1.1. DiagnosticS.og() «eeueemneememniennieniiiii e
A4, DNSRESOIVEr Classc..uiiuniiiiiiiii et
A4, Class MELhOAS ...cuuiinniiiiiiiii et
A.4.1.1. DNSReSOIVErresolVe() ...ceuueeueuniirieiiiiiiiieie e
A4.2. Callback fUNCLIONSiiiiiiiii e
A4.2.1.dnsOnSuccessCal I backooeeviiiiiiiiiiiiiiii,
A422. dnsOnFai l ureCal I backccooceeveeiiiiiiiiiiiiinciiie,
A5, EXEENAEr Class ...couiiiniiiiiiiie it
A.5.1. INSLANCE PrOPEItiES ..euuiiiniiiiiiiii ittt et et ea e eeeenes
AS5.1.1. eXEENAEI LINPUL coeeiieiiii e e
AS5.1.2. extender.relayoooeeiiiiiiiii i
AS5.1.3. extender .serialooooiiiiiiiiiniiiiii e
A6, GUI CIaSS oenieeiiiii et
A.6.1. Class PrOPEITIESceuriuuiern ittt ettt et ettt ee e e e e e e ennennnes
A6.1.1. GULREIGN oo
A6.1.2. GULWIAEN (oo
A.6.2. Class MELNOASc.uiiuniiiiiiiii et
A6.2.1. GULAAABULEON() ..eevnneiiieiiie ettt ettt
A6.2.2. GULAdAPANEl() . ccvuneeiiiiiieeiie e
A6.2.3. GULAIEIT() oevnneeiiieeiieeiie ettt
A.6.2.4. GULgetDisplayDate()oceuveunieunieiiiiiiiieiieieei e
A.6.2.5. GULgetDisplayTime() «..c.uveuniemiiniiiiiiiiei e
A.6.2.6. GULUPAAtESCreen() ..c..uevuneruiiiiiiiiiieii et
A6.2.7. GUILWIAZEL() -.ueeenneeiineeiieeei ettt e e e e
A7, IMAZE ClASS «oenieiiei e
A.7.1. Image class CONSTIUCLON ...ccuuiiuniiniiiiiiieii ettt et e et et eeneenaeenaeenaees
A7 A IMAZE() weneeneineit et
A.7.2. INSLANCE PrOPEITIES ..cvuniiineiiiiiiii ettt et et et et e e eeaeeeneeaaeeeaeenns
AT.21. T MBYE.NEIZNT oeeeiiieieiiii e
AT7.2.2. 1 MAGEWIALN cooeniiiiiiiie e e e e e aens
AL INPUL ClASS .eteiiii ittt a e
A.8.1. INSLANCE PrOPEIti€S ...ceuniiniiniiiiiiieiie ettt ettt e en e e eanens
F I T PR o o UL e 11 - N
AB.1.2. I NPUL LONEFTOF .eniiiiiiiie et e e e e e e eeae e
A8.1.3. i NPUL .ONTIMEOUL ..uevveniiiieiii et e et e e e e e et e e reeeaeneeees
A.8.2. Callback fUNCLIONSieniiiiiiiii e
A8.2.1.onl nput Dat aCal | backcooeevviiiiiiiiiiiieie e
A822. onlnputErrorCall backccoooviiiiiiiiiiiiiiii e
A.8.2.3. onl nput Ti meout Cal | backccoeeviviiiiiiiiiieieeees
A.8.3. Instance Methodscouiiuiiiiiiiiiiiii e
AB3.1. T NPUL .GEL() +eervvnneeiiiiee ettt e et e e et e e e e
A8.3.2. 1 NPUL .MALCh() ..uneeeiiiieiiiie e
A8.3.3. T NPUL WAIL() weveeerriieeiiiie et e ettt e et e e eeieeeeeen
A9, Page Class ..coeuiinii i e

vi

A.10.

A11.

A12.

A13.

ProntoScript Developer's Guide

A.9.1. INSLANCE PrOPEItiES ..ceuniiniiniiiiiii ettt ettt e et e e e ennens 104
A9 page.abel ... 104
A9.1.2. PAGE.ONENLIY oo 104
A9.1.3. PAGE.ONEXIT ..oenieiiiiiiii i 105
A.9.1.4. page.repeatintervalccoveuiiiiiiiiiiiii e 105
A9.1.5. PAGELAG oo 105

A.9.2. Callback fUNCLIONSieniiiiii i 105
A9.21. onEntryCal | back ...ccoooveiiiiiiiiiie 105
A9.2.2. ONEXi t Cal | DaCK ...oooiiiiiiii i 106

A.9.3. Instance Methodscoiiiiiiiiiiiii e 106
A9.3.1. PAGEWIAZEL() +evneenneiniineiiiei e 106

Relay Classcouneeniiiiie e 106

A.10.1. Instance Methodsccuuiiuiiiiiiiiiiiiii e e 107
AT011. T 1 AY.GEL() vevvrnneeeiiiee et 107
AT01.2. T €1 QY .SEL() wuneeeerneeiiiie ettt 107
A10.1.3. r el AY.toggle() «vueeeeeeeeeeeiiie e 108

Serial ClasS ..ennei i e 108

A 111, INSTANCE PrOPEITIES ..cenneinniiiiiiiiineii et ee et e et et eeneeeneeanee 109
A1 Serial bItrate coeeeeeeeeeeeiiiiiiiiiiiie e 109
A11.1.2. serial .databitsccooeeriiiiiinreiiiiiiiiii e 109
A11.1.3.5Serial .onData c..eeeeeeeiiiiiiiiiiiiie e 109
AT1.1.4. Seri Al .ONErrorooeiiiiiiiiiiie e 110
AM1.1.5. Seri al .onTIMEOULceeeiiiiiiiiiiiie et 110
AT1.1.6. SErial parity .ooeeeeeeieiiiiiieee e 110
AT1.1.7. Seri Al .Stopbits ...c..uuiiiiiiieeiiiiiie e 110

A.11.2. Callback fUNCLIONSc.uiiuiiiiiiiii e 111
A1121.0nSerial DataCal | backccooovveiiiiiiiiiiininiiiiiiiiee, 111
A1122.0nSerial ErrorCal |l back ...cccoevviiiiiiiiiiiiiinneiiiiiiiiinn. 111
A11.23.0nSeri al Ti meout Cal | backccccooeeiiiiiiiiiiiiiiiiiiiiiinn, 111

A11.3. Instance Methodsccoiiuiiiiiiiiiiiiiiii e 112
AT1.31.serial .match() «oeeeeeneeeiiie e 112
A11.3.2. S€r i Al .receiVe() «evvuneeeieeeeeiiiee e 113
A11.33.Serial .send() coeeeeeeniiiiiiieeee e 113

SYSEEM ClASS ..einiiiii ettt et eaaee 114

A12.1. Class MEthOAS ...c.uiiiiiiiiiiiiii e 115
A.12.1.1. System.addEventListener()ccoeeeuiiiiiiiiiiieiii e 115
A12.1.2. System.delay() «.e.eeeeeneeeneeiiei e 115
A.12.1.3. System.getGlobal()cceuuiiiiiiiiiiiiiii e 116
A.12.1.4. System.getApplicationVersion()ccoeeeuveeiiiiiiiniiineenneinennnens. 116
A.12.1.5. System.getBatteryStatus() «...c.oeeuneenriinieiiiiiiii e 117
A.12.1.6. System.getBootloaderVersion()ccoeeuveuiiiiiiiiiiiiiininnennnn. 117
A12.1.7. System.getFreeCFMemory() «..oceeeenreeniiiiiiiiiiniiece e 118
A.12.1.8. System.getFirmwareVersion()ccceeeuveereiiiiiiiniiniineinenneen. 118
A.12.1.9. System.getlRVersion()c..ceoveenieiiiiiiiiiiiiiie e 118
A.12.1.10. System.getModel() ...c.uveermiiiiiiiieee e 119
A.12.1.11. System.getNetlinkStatus()ceoveeiiiiiiiiiiiiiiene 119
A12.1.12. System.getSerial()oeenvemniemeiiiiiii e 120
A12.1.13. Systemuinclude() ..coeeeenieniiiiiiii e 120
A12.1.14. SystemMPrint() eeeneenennieneiieii et eeaees 121
A.12.1.15. System.removeEventListener()c..ccoveuieiiiiiiiiiiiiiiieieennes 121
A12.1.16. SYStEM.IESEL() cevuerneinneiineiieiie ettt ettt en e 122
A12.1.17. System.setDebugMask()c.cceeviimiiiiiiiiiiii 122
A.12.1.18. System.setGlobal()cccuiiiiiiiiiiiiiiii 123

A12.2. Callback fUNCLIONSc.uiiiiiiiiiiii e 123
A122.1. systenEvent Li Stener ..o.ooooeiiiiiiiiiiiiiieiieeeee e 123

TCPSOCKEL ClasSs ..c..evnniiiiiiiie ittt 124

A.13.1. TCPSocket class CONSTIUCTONc..ieuuiiuniiiiiiieiiiieiieee e eieeneeneennens 124

vii

ProntoScript Developer's Guide

A13.1.1. TCPSOCKEL() +ovvvvvvenneeeeeeeieiiiiiee e e e e ettt e e e e e e e e e eeeeenes 124
A.13.2. INSTANCE PrOPEITIES ..ceuuivnniiniiiiiineii et ei et et et eeaeeeaeeanee 125
A13.2.1. t cpsocket .connectedoevvveeiiiieiiiineiieei e 125
A13.2.2. 1 CPSOCKEL .ONCIOSE ...vvvnniiiieeiiieeiie et e et e e e e e eaeeeees 125
A13.2.3. 1 CPSOCKEL .ONCONNECE ...vvvneiiiiiiiieeeiee e e e e e e e eaeeaenns 125
A13.2.4. 1 CPSOCKEL .oNDAtA c.euviiveniiiieii e e e e 126
A.13.2.5. 1 CPSOCKEL .ONIOEITOr ..uviiveeiieiieeei e e e e 126
A13.3. Class MEthOdSeuieiiiiiiiie et e e 126
A.13.3.1. TCPSocket.setSocketLimit()uuurreererriiiiiiiiieeeeeeeeeeiiiinnen 126
A13.4. Callback fUNCLIONSiuiiniiiiiii e 127
A13.4.1. onTCPSocket A oseCal | backccooeviiiiiiiiiiiiiiiiiine 127
A.13.42. onTCPSocket Connect Cal | backccccoovviiiiiiiiiiiiinnnnnnnnnn. 127
A.13.43. onTCPSocket Dat aCal | backcccoeiviiiiiiiiiiiiiiiniiiiinees 127
A13.44. onTCPSocket Error Cal | backccooeveiiiiiiiiiiiiiiiiinns 127
A13.5. Instance Methodscouiiuiiiiiiiiiiii e 128
A13.5.1. 1 CPSOCKEL .CONNEECL() wvvnrereiinnieeiiiieeeiiie et 128
A13.52. 1 CPSOCKEL .ClOSE() wuvnniriiiieeiiiiiie et 129
A13.53. 1 CPSOCKET WIILE() wevvuneiiiiieeeiiiie et 129
A13.54. 1 CPSOCKEL .read() «.uneeeeeeneeeiiiieeeeiie e 129
A4, UDPSOCKEE CIasscuiiniiiiiiiiiiiie ettt e e e e 130
A.14.1. UDPSocket class CONSLIUCTONc.uiuniuniniiieiniiieieeiieieeieeie e eeeeneeieennenes 131
AT4.1.1. UDPSOCKEL() +vvennneeeeeririiiiniaeeeeeeeeeeeiiiaeaeeeeseerrnnnnnsaeseeeeereennnnns 131
A14.2. INSTANCE PrOPEITIES ..ceuuevnniiiiiiiiineii et ei e et eei et eaneeeneeanee 131
A.14.2.1. UdPSOCKEL .oNDAta ..vuuiiveniiiieii et e e 131
A.14.2.2. UAPSOCKEL .ONIOEITOr ..uviivieiiieiie e e e e e 132
A.14.3. Callback fUNCLIONSiuiiniiiiiii e eaee 132
A.14.3.1. onUDPSocket Dat aCal | backcccooeviiiiiiiiiiiiiiiniiiiinnees 132
A.14.3.2. onUDPSocket Error Cal | backccooeveiiiiiiiiiiiiiiiiins 132
A14.4. Instance Methodsoouiiuiiniiiiiiiii e 133
A14.4.1. UAPSOCKEL .ClOSE() wuvnniriirieeiiiiie e 133
A14.42. udpsocket .mcastJoin() ..ccevuueeeeerueeeiiiiieeeiiire et 133
A14.4.3. udPSOCKEt .MCASLEAVE() ..uverrrinnreiiiieeeiiiiie e e e 134
A14.4.4. UdPSOCKEL .SENA() wvvurriiriieeeiiiiie e 134
A14.45. udpsocket .setMcastTTL() covuueeeiennneeiiiineeeiiiie e eeeiieeees 135
A5, WIAZEL CIass ...oeniiiiii it 136
A.15.1. INSTANCE PrOPEITIES ..ceuuiinniiniiiiii ettt et e e eaaee 137
A15.1.1. Wi dget .bgcolorevueiieeeiiiiiiieee e 137
A15.1.2. Wi dget .bold ...oeovieiiiieieieie e 138
AN5.1.3. W dgET .COIOT ittt 138
AN5.1.4. W AT FONT Levviiiiieeeieiiiiiiee e e 138
A15.1.5. Wi dget fONLSIZE ..vvvueieeeeiiiiiiiiiie e et 139
A15.1.6. Wi dget .haligncoeriiiiiiiiiee e 139
AA15.1.7. Wi dget .heightoooviiiiiiiiiii e 139
A15.1.8. Wi et .italic ooeeeeeieiiiiiiee e 140
A15.1.9. Wi dget .Jabeloooeeiiiiiiiiiie e 140
A15.1.10. Wi dget deft .oovveiieeieeeeeieee e 140
A15.1.11. wi dget .onHoldooovviiiiiiiiiii e 141
A.15.1.12. wi dget .onHoldIntervalcccoeeviviiiiiiiiiineeeeeeiiceee e 142
A15.1.13. Wi dget .oNMOVE .eeevviiiiieieeeeeeeeieee e 142

A 15114, Wi QL .ONPrESS ...viiiiiiiiiii et e et e et e e eaenas 143
A.15.1.15. Wi dget .onReleASEevvvniiiieeiiieeiice et 143
A15.1.16. wi dget .stretchlmageovveiiiiiiiiiiiiiiiiiiie e 143
AN51.17. Wi dgBT £ coeveiiiiiiieeeeee e e e et e e et eeaees 144
AN5.1.18. Wi AT cLOP +evvvviiiiiieeeeeieeiiiieee e e e e e e et e e e e e eerere e e e aeaees 144
A15.1.19. Wi dget .transparentoeeevuueeeeiiieeeeiiiie e e et e e 145
A15.1.20. Wi dget .valignoeeeeeiieiiiiiie e 145
A15.1.21. Wi dget visibleoooviiiiiiiieeeii e 146

viii

ProntoScript Developer's Guide

A15.1.22. Wi dget width ..o 146

A.15.2. Callback fUNCLIONSc.uivuiiiiiiiiiiii e 146
A152.1. onMoveCal | back ...t 146

A152.2. 0nPressCal | backoooooeiiiiiiiiiiiiiii e 147

A.15.3. Instance Methodsc.oieuiiiiiiiiiiiiiii e 147
A15.3.1. Wi dget .execUteACTIONS() «.evuueeeeruuneeeiiiieeeeiiieeeeteieeeeeiiieeeenna 147

A15.3.2. Wi dget .getBgColor() ...oveeeuuuieiiiiiieeiiiiie e 148

A15.3.3. Wi dget .getColor() ...ooeeeeeerermmmiiiieeeeeiiiiiiiee e 148

A15.3.4. W dget .getlmage() ...eeevreermmmmmnreeeeiiiiiiiiee ettt e e 149

A15.3.5. Wi dget .getlabelSize() «...uveereeeeiiiiiiiiiiieeeecee e, 150

A15.3.6. Wi dQeL .remove() «eevvuneiiiieeeeiiie e 150

A.15.3.7. Wi dget .scheduleActions()uuveeeerunreeiiiineeeiiiie e 151

A15.3.8. Wi dget .setBgColor() «..couvrruuirreeiiiiiiiiiiiiie ettt 152

A15.3.9. Wi dget .setColor() «.ccuuummmuirreeeiiiiiiiiiee ettt 152

A.15.3.10. Wi dget .setlmage() «.veeeeeereeeeiiiiie e 153

B. HEtpLIbrary API ... et 155
B.1. getHTTP() static methodcccooeniiiiiiii e 155
B.2. getHTTPBinary() static Methodc.oiiiiiiiiiiiiiiii e 155
B.3. getHTTPXML() static Methodc..oiiiiiiiiiiiiiii e 156
B.4. HEttpReqUEST Classccouiiiniiiiiiiiii i et 157
B.4.1. HttpRequest class CONSLIUCLONc..veuuiiiniiiiiiieiiiii e eaeenneens 157
B.4.1.1. HEtPREQUEST() «.uueeerriniiiiiieeeiiie e 157

B.4.2. INStANCE PrOPEItIES ...ceuuirniiniiiiii et ettt ettt e ee e e e e e 158
B.4.2.1. ht t Pr equUEeSt .ONCONNECEivvvniiiieeiieeie et ea e 158

B.4.2.2. ht t pr equest .onreadystatechangecccouiiiiiiiiinieiiinnnne. 158

B.4.2.3. ht t prequest .readyStateoeeeeuuveiiiiiireiiiiiieeeeiie e 158

B.4.2.4. ht t pr equest .responseBinarycccoeeveeiiiiniiiiiineeiiiieeeeenan, 159

B.4.2.5. htt prequest .responseTeXtceeeuuuieeiiiiiieeeiiiie e eeeenann. 159

B.4.2.6. htt prequest .responseXMLcccoevuiiiiiiiiiniiiiiiieeeeiie e, 159

B.4.2.7. Nt t Pr @QUEST .StAtUS .evvniiiiniiiiieeiie et e e ee e e e er e e e eaennas 159

B.4.2.8. ht t prequest .statuSTEXEuviiveeiiieeeiieeeiieeii e eieeeereeereeenens 160

B.4.2.9. ht t prequest .withCredentialscccoeviiiiiiieiiiineiiieeeins 160

B.4.3. Callback fUNCLIONSccouiiniiiiiiiiii i e 160
B.4.3.1. onConnect Cal | backcccccevviiiiiiiiiiiii e 160

B.4.3.2. onReady St at eChangeCal | backcoooeeeviiiiiiiiiiiiineins 160

B.4.4. Instance Methodsco.ieiuiiiiiiiiii e 161
B.4.4.1. ht t prequest .abort()ceeuvuueeeiiiiieeiiiiie et 161

B.4.4.2. htt prequest .getAllResponseHeaders()cccuuvveeeirinerennnnn.. 161

B.4.4.3. ht t prequest .getResponseHeader()coveeeirveiiiiinneeennnnn.. 161

B.4.4.4. ht t Pr eqUEST .OPEN() weuuniiiiiieiiiiiie ettt 162

B.4.4.5. ht t prequest .overrideMimeType()cccvvurerrirnreiiiineeeiiiieeeen, 163

B.4.4.6. ht t prequest .send() -..cceevureeeeirneeeiiie et 163

B.4.4.7. htt prequest .sendChunk()ccuuveeeiiiiiieiiiiiieeeiiiee e, 163

B.4.4.8. ht t pr equest .setRequestHeader()cccvvuvviiiiiiniiiiiiieneennnnn. 164

B.5. parseHttpUri() static methodooiiiiiiiiiiiii e 164
B.6. parseUri() static Methodc.ocouiiiiiiiiiiiiiiii e 165
B.7. proxXyHOSt StatiC PrOPEertyc.cceuiiiuiiiuiiiiiieii ettt et e e ennee 166
B.8. pProxyPort Static ProPertyc.cceuiiuiiuiiuiiiiiii ettt e e e eaaee 166
B.9. showHTTPImage() static methodcceiiiiiiiiiiiiiiiiiiii e 167
C. Core JavaScript Classes DeSCriptionccuuiiuiiuriiiiiiiiiiiie et eeneenee 169
ClA AITAY CIaSS ettt eaaee 169
C.2. BOOIEAN ClASS c.ueiniiiiiieii it eaaee 170
C.3. Date Class .uceunieiiiiiei ittt enaee 170
Cih. Error Class ..oeueeniii it 172
C.5. EVaError Class ..c..oeuniinii i e eeaee 172
C.6. FUNCLION ClaSS ..evnniiiiiiieii ettt ettt et ei e e e e 172
C.7. Math Class ..oeneeeiiiiie e e 173

ProntoScript Developer's Guide

C.8. NAMESPACE ClASS ..eeuuiiiiiiiieiii ettt et ettt e e e et e et eeai e eaneeen 174
C.9. NUMDBET ClaSS ..cenneiiiiiii ettt et eei e et e e 174
C.10. ODBJECE ClaSS ..ueenieiiieeiiie ettt ettt ettt ea e 174
C11. QINAME ClaSS ettt ettt et et e e eaeaeaeaeaeaeaeaaanes 175
C.12. RaANGEEITOr ClIass ..c.uuiiiiniiiiiiii ettt e 175
C.13. ReferenCeError Classc..ooieuuiiiieiiie ettt 176
C14. REZEXP ClaSS ..eevuniiiieiiie et ettt ettt et eaaee 176
CLA5. SEFNG ClASS .oeieniie et 177
C.16. SYNTAXErTOr Classc..uieiunieiiiieiiie ettt et e e e 179
C7. TYPEEITOF Classcceuuiiiiiie ettt e e e e 179
C18. URIEITOr Class ...c.uueeuuniiiieeiie ettt ettt e e e e 179
€19, XML CIaSS -eeinniiiieeii ettt et ettt et et e e e e 179
D. Predefined tags ...c..oieuu ittt ea e eeas 181
E. Pronto fONTeiiiiii ettt e eeaas 183
FUFEREr FEAAING ..eeneiiie ettt et e e e et e e eees 187
[T [OO PP OP TP PPPT PP 189

ProntoScript Developer's Guide

List of Tables

E.1. Basic Latin font symbolscoouiiiiiiiiiiiiiiii e 183
E.2. Supplemental Latin font symbolsccooiiiiiiiiiiiiiiiiiii e, 183
E.3. Spacing modifier font symbolscoouiiiiiiiiiiiiiiiii 183
E.4. Greek font symbolscoouuiiiiiiiiiiiiiii e 184
E.5. Cyrillic font symbolsccouiiiiiiiiiiiiii e 184
E.6. Hebrew font symbolsccouiiiiiiiiiiiiii e 184
E.7. General Punctuation font symbolscccooiiiiiiiiiiiiiii 184
E.8. Currency font symbolscoouiiiiiiiiiiiiii 184
E.9. Letterlike font symbolsccoouiiiiiiiiiiiiiiiiii e 184
E.10. Mathematical operator font symbolscccceeiiiiiiiiiiiiiiii e, 184
E.11. Geometrical shape font symbolsccoiiiiiiiiiiii e, 185
E.12. Custom font symbolscoouiiiiiiiiiiiiiiiii e 185

Xi

ProntoScript Developer's Guide

ProntoScript Developer's Guide

List of Examples

1.1. Simple button SCriPt SOUICE COAEeuuiinniiiiiiiii ettt ettt et e e e eeanee 1
1.2. Processing data in XML formatc.ooouiiiiiiiiiiiie e 4
20 T F /RIS s 11
2.2, SWE T CHN BIOCK ettt 11
2.3 WHT T 8 TOOP -ttt et e e e e 12
2.4, T OF TOOP et ettt ettt e e e 12
2.5, F 08 11N TOOP ettt ettt et et 12
2.6, EXCEPLION ...eniiiet ittt et ettt ettt e e e e 13
2.7. Custom QD] ECT CrEAtION ...c.uiiuieiiieeii ettt et e e e et e e et e e e e et e e e e eeanes 14
2.8, IVBE N et e 16
3.1, TOZEIE DULLON «.eninniiiie e et ettt e e e e e et et e e e e 23
3.2, INfO POPUP ettt ettt ettt eane 24
3.3. WHhile-pressed COUNLETiiuniiniiiiie ettt et e e eeanee 24
3.4, POSItiON Trackercc.iiiiiiiiiiiiiii e 25
3.5. Dynamically created BULEONcouiiiniiiiiiiii et 26
41 0NHOD oo 27
4.2. SChEAUI BACT T ONS () tiiriiiiiiii et e e e e et e et e et e e e e e s eannas 27
4.3. Executing a reusable MaCroccooiiiuiiiiiiiiiii e 28
5.1, BIOCKING WRIT ..ttt ettt et et et e e et et et e e e eanae 29
W Yol =T [| =Y AN i =Y O () PR 30
7.1. System set A obal () / System get A obal () .ccooiiiiiiiiiiii 35
7.2, ONROT A Y ittt et ettt ettt et ea e aanae 37
7.3. Label animationc..oiiiuiiiiiiiiiiii e e 38
8.1. Synchronous serial commMUNICAtIONc..ieuiiniiiiiiiiii e e 40
9.1, Library header ... e 45
10.1. Synchronous HTTP Clientcoouiiiiiiiii et 51
10.2. Basic asynchronous HTTP clientc.ooouiiiiiiiiiii e 53
10.3. Sending data to @ UDP SErvercoouiiiiiiiiiiii e 54
10.4. Receiving UDP datagramsccuuieuiiniinieiiei ettt ettt ea e e e 55
10.5. Sending a UDP datagram to a multicast groupc..cc.eeueiiiiiiiiiniiiniiieiieeineeieeennen. 55
10.6. Specifying Multicast TTLcouiiuniiiiiiiiei ettt e eaaees 55
10.7. Receiving Multicast UDP datagramsc.oeeuiiiiiiiiiiiiiiiieiie et 55
11.1. Creating an image from image dataccuuiiiuiiiiiiiiiiiiiie et ee e 57
11.2. Manual creation of @ BMP imagecouiiuniiiiiiiiii e 58
11.3. Displaying an image from a HTTP Servercooouiiiiiiiiiiiieie e 59
141, SYST @M PIi N () i ettt e e e e e e e eeans 71
AT ACTT VI TYADEI e 78
A2. 0NROt ar YCal [DACK oo 82
A3.0NnSl eepCal | Dack ..o, 82
A4 onNVAKECal | DACKiiiiiiiiiiiiiiiiiiiiiii 83
A5, CREXEENAEI .oeuniiiiiiiii ettt 85
ALD. CRACTVITY() - erneenneiniin ettt et ettt ettt e et et et et et et e et e et e et eeaaeenaeanne 86
A7 CFPAGE() eeuneiniin ettt ettt ettt e e eans 87
A8, CREWIAZEL() oeervnnneeiiii ettt ettt ettt ettt e e et e ettt e e e et e e enb e e et e eenaanes 88
A.9. DIagnostiCS.dOZ() - evueuniinniiieie ettt a e eaaae 89
A.10. DNSRESOIVEFIESOIVE() euneeniiniie ittt et e e eeane 90
A1 EXE ENAGT LINPUL ettt et e et e et e et e et e e e e eeiaaas 91
A2, EXE ENACE Lrelay ... et 92
A3, extender.serialccccc 92
A4, GULAAABULLON() -.eeriiiieiiiiie ettt ettt ettt ettt ettt e e ettt e e ettt e e reea e e eenaaeeeenes 94
A5, GULAAAPANEI() eeeeineeiiiiie et eena e 95
A6, GULAIEIT() wenneeiiiieeeeii et ettt ettt e e ettt e e ettt e e ettt e e eeeb e eeeanaeeees 96
A7, IMAGE CONSTIUCTON ..iuiiiieii et ettt ettt et et et et e et et et e et e ea e ean s et e eaneenneenneens 99
A8 . onl nput Error Cal | Dack ..o 101

xiii

ProntoScript Developer's Guide

AT9. PAGEWIAZEL() +evnneernneeineeiie ettt ettt ettt e ettt ettt e e e e e e e eens 106
A20.0nSerial ErrorCal 1 Backcocoooiiiiiiiiiiiii 111
A21. W dget .onHOIA ..couniiiie et e e a e aes 141
A22. Wi dget .onHOIAINTErValcivuniiiiiiie et e et e e aan s 142
A23. Wi AgEL .ONREIEASEoiveniiiiieiii et e et e e e e e et e e et e e er e e aa e aen s 143
A24. Wi dgEL .tIMAZE() everrnneeiiii ettt ettt e e e e e 150
A25. Wi dget .getLabelSiZe()ccvvuuiiiiiiiiiiiiie et 150
A26. Wi AOEL .SEIMAZE() +vunneeeriieeeiii ettt ettt ettt eeaan 154
B.1. getHTTP() Static Methodiiuuuiiiiiiii ettt ee e 155
B.2. getHTTPXML() static Methodc..iiiiiiiiiiiiie e 156
B.3. parseHttpUri() static Methodccuuiiiiiiiiiiiiii ittt eea e 165
B.4. parseUri() static Methodccuuiiiiiiiiii ittt et e e e e e 166
B.5. ProxyPort Static PrOPertyc..cceuieiiiiiii ittt ettt 167
B.6. showHTTPImage() static Methodcc.iiiuiiiiiiiiiiiieiii ettt eee e 167

Xiv

ProntoScript Developer's Guide

Preface

1. Using this guide

The guide assumes you have some background in programming, either with languages like C, C++,
Java or other languages, or with JavaScript. Even so, it is built up from easy to advanced, with plenty
of examples to make the process of getting familiar with ProntoScript a fun experience:

For the experienced programmer. You can find snippets of proven, best practice code, before
exploiting the full freedom of writing your own, custom code.

For the novice programmer and Pronto enthusiast. You can experiment with working,
useful, real life examples that demonstrate what ProntoScript can do in automation projects.

This document does not strive for completeness. For a complete description of Javascript 1.6, on
which ProntoScript is based, refer to David Flanagan's Javascript, the Definitive Guide, 5th edition pub-
lished by O'Reilly [Flanagan].

2. What's new in 1.3

This version of this guide has been updated for ProntoEdit Professional 2.4, and the additional Pron-
toScript features available in the Control Panel's Platform release 2.2 (Application version 7.2.X):

Dynamic widget creation. Buttons and Panels can be added to the GUI dynamically; without
being defined in the configuration file, using new GUI . addButton and GUl . addPanel class
methods. They can be removed from the user interface using a new Wi dget.renpve instance
method.

Text properties. Additional text properties can now be set for widgets: font , font Si ze,
hali gn, valign, bold and italic.Futhermore, the dimensions needed to render a text
as a label can now be obtained using a new get Label Si ze method; and colors for both pressed
and released states of buttons can be set using new set Col or and set BgCol or methods, and
retrieved using the get Col or and get BgCol or instance methods.

LCD display dimensions. The LCD panels pixel dimensions can now be retrieved using the
QU . wi dt h and QU . hei ght class properties, making it easier to create libraries which can
deal with multiple control panel models.

Scheduling action lists. A new schedul eActi ons method is now available for widgets,
allowing action lists to be scheduled asynchronously, so they will be executed even if the control
panel is currently busy playing actions.

Reusable macros. Action lists defined in reusable macros can be executed using execut eAc-
tions or schedul eActi ons, as for action lists of buttons. See Section 4.2, “Reusable macros”
for an example.

Controlling rotary sound. The click sound of the rotary can now be enabled or disabled using
the rot arySound property of the Activity class.

Battery status. A new System getBatteryStatus class method allows retrieving the
current battery level.

Network interface status. A new System get Net!| i nkSt at us class method allows re-
trieving the current network interface status.

System events. A new System addEvent Li st ener method allows registering an event
handler which gets called for changes of battery or network interface status.

XV

ProntoScript Developer's Guide

Activity Entry and Exit handlers. New activity.onEntry and activity.onExit
callback methods can be set to execute a function when entering or leaving an activity.

Page Entry and Exit handlers. New page. onEntry and page. onExit callback methods
can be set to execute a function when entering or leaving a page.

Widget press handlers. A new wi dget. onPress callback method can be set to execute a
function when a button is pressed, yielding the relative coordinates of the press location.

Motion events. A new W dget. onMove callback method can be set to execute a function
when the touchscreen location changes while a button is pressed, allowing the creation of user
interfaces which respond to such motions.

Panel reset. Anew System reset method is now available to perform a partial or complete
restart of the control panel programatically.

UDP. A new UDPSocket class is available, allowing sending and receiving UDP packets over
the control panel's network interface.

DNS. A new DNSResol ver class is available, which allows looking up the IP address corre-
sponding to a DNS host name.

3. What's new in 1.2

This version of this guide has been updated for ProntoEdit Professional 2.3, and the additional Pron-
toScript features available in the Control Panel's Platform release 2.1 (Application version 7.1.X):

ProntoScript libraries. ProntoScript libraries can now be included in a script using the
System i ncl ude method. (Described in Chapter 9, Libraries)

Widget fill color property. The fill color of a widget can now be set using the bgcol or
property.

Controlling panel transparency. The transparency of panels which do not have a background
image can be controlled using the boolean t r anspar ent property.

Increased dynamic widget size. The Wi dt h and hei ght properties of a W dget can
now be set to sizes up to 65535 by 65535 pixels, where previously this was restricted to the pixel
dimensions of the display.

Network interface control. The network interface can be disabled or (re-)initialized from a
script. (See Section A.1.1.9, “act i vi t y.wifiEnabled”)

Power management events. On an activity level, callbacks can be defined which get
called whenever the control panel enters sleep (standby) mode, or is woken up; these are the
activity.onSl eep and activity. onWake function properties of the Activity object.

Additional system information. Most of the information visible in the Info tab of the settings
mode on the control panel can now be retrieved from within ProntoScript using a range of new meth-
ods of the Syst emclass: get Mbdel , get Appl i cati onVer si on, get Boot | oader Ver -
sion, get Fi rmnvar eVer si on, getl RVersion, get Seri al and get FreeCFMenory .

Basic popups. Anew GUJ . al ert method is now available, providing an easy way for a Pron-
toScript programmer to show messages to the end user. (Useful for handling exceptions)

4. What's new in 1.1

The 1.1 update added added 2 major features to the ProntoScript toolset:

XVi

ProntoScript Developer's Guide

* Use the Rotary wheel
* Get and place an image over IP

The rotary wheel. A new activity property (see Section A.1.1.5, “act i vi t y.onRotary”) has
been defined to enable you to use the rotary wheel for any purpose. Typically it can be used for
scrolling through lists showing music content.

Get and place an image over IP. This powerful function allows you to show an image (BMP,
PNG or JPG: see Section A.7.1, “Image class constructor”) on the control panel that is retrieved from
a source via IP. Typical applications are album art for media servers, IP cameras (still picture only;
MPEG is not supported) or picture viewer. As an extra there is also a stretch property available (see
Section A.15.1.16, “wi dget .stretchlmage”) that will allow you to even build dynamically growing,
shrinking and warping buttons.

Xvii

ProntoScript Developer's Guide

ProntoScript Developer's Guide

Chapter 1. Introduction

1.1. Why ProntoScript!

ProntoScript allows one to add flexible 2-way communication and dynamic Ul's to the Pronto system,
bringing an even higher level of home automation sophistication.

It is a system that:

* has easy to use plug-and-play modules for the custom installer
* is powerful and flexible for the 2-way module programmer

* is easy to learn

It is based on JavaScript, a popular and proven scripting language. Integrated into ProntoEdit Profes-
sional, it unlocks the full power of the WiFi-enabled Prontos and Extenders:

1. JavaScript is a modern, very high level programming language, allowing rapid development of rich
end user applications

2. The web offers plenty of references and solutions to general programming challenges in JavaScript,
more than any other language.

3. Encapsulated into a single Pronto Activity (Device), that can be merged into projects, the com-
plexity of the code can be shielded completely from the custom installer. He just wants to plug in

a 2-way module for controlling his selected equipment.

A few standardized hidden pages with instructions and parameters allow him to configure the module
to operate seamlessly within his specific system.

Let's begin with the classic "Hello, world!" program and see how to write this in ProntoScript.

1.2. A simple button script

Example 1.1. Simple button script source code
| abel = "Hello, world!'";

By specifying the above ProntoScript for a button, its label will be changed to the famous greeting
message at the moment a button is pressed.

ProntoScript Developer's Guide

2 ProntaEdit Professional 2 - [Untitled Lcf*] ===
File Edit View Insert Praject Toals Help
=] 61 =] | L L& ‘I:IS\mu\itor g Download ?MyDatnbise
Project Overview B X “&¥Home - Home Page « ¥ | Bufton Praperties a3 x
B we QO - R Y L] s | | Label | Appaarance | Actions | Advanced |
Egl Gystem 2 it [Q = A
Fieusable Macios
= 4 Home label = "Hello, world!";
[2] Activity Propetties ||'1 Name 151 ﬁ”" ESatine \E"i E
{2 Home Page
Save to File] [Reload from File]
Building Blacks 2 x
Equipment & Codes | Graphics Gallery | Pronto3 cript Modules I ProntoScript Libraries
RELE®
Froject Components: Component Functions: Select Extender:
Extender Type
Extender 0 RFX3400
< m | +
Select Port
Companent Location: Add Extenders to Project...
[Buttan [Position: 0, 0 [Sze: 136 116

To try out this example:

* Open ProntoEdit Professional 1.1 or above

* Create a new configuration (Ctrl+N)

* Open the home page and add a button to it (Alt+B)
* In the Button Properties, in the Actions tab:

a. Press the 'PS' toolbar icon

Note

Starting with ProntoEdit Professional 2.3, it is possible that a message "Pronto
Script code can not be seen in standard viewing mode" appears.

If this is the case, select the Options... menu entry of the Tools menu in the main
menu bar, to show the Options dialog. In that dialog, select the General Settings
tab, and select Advanced view in the View Mode Selection box.

b. Add the ProntoScript code as shown
* Download to the Pronto (Ctrl+D)

* On the Pronto, press the button you created once

1.3. ProntoScript features

The main features of ProntoScript are:

* ProntoScript is based on JavaScript 1.6

ProntoScript Developer's Guide

* The ProntoScript APl exposes a set of objects that represent the Pronto System, the Graphical
User Interface and the Extenders.

* ProntoScript is embedded in the Ul of the ProntoEdit Professional, facilitating writing and testing
custom code for the Pronto.

* ProntoScript based 2-way modules can be integrated into any new or existing Pronto configuration
project by means of the merge feature.

ProntoScript is based on the popular JavaScript scripting language, as used in Internet web browsers.
In fact, the core ProntoScript language is largely compatible with ECMAScript-3, as present in popular
web browsers such as Microsoft's Internet Explorer, or Mozilla Corporation's Firefox.

Think of any programming challenge you faced in the past with languages like C, Pascal, C++: with
JavaScript (ProntoScript) you'll be able to handle it too, but most probably with less lines of code

(and less hassle). This is illustrated with the examples in the following chapters.

JavaScript has a top notch arsenal of powerful tools for data processing, so much needed to write
state-of-the-art 2-way communication drivers for a 2-way controller like Pronto.

Most RS-232 and TCP based protocols are ASCII based, some of them XML based. JavaScript provides
two powerful tools for tackling those: regular expressions and ECMAScript for XML (E4X).

1.3.1. Regular expressions

Regular expressions allow you to take any kind of data stream input and filter it for the information
that you need: either to update the display or know the exact 'state' of the equipment you are
communicating with.

Example for a volume change response of an A/V receiver:

MW80<CR>

or in JavaScript:

var response = "M8O\r";

To filter out the integer value 80 without relying on the fact that it is exactly 2 characters starting
at the position 3 one could use:

var volune = parselnt(response. match(/\d{2,}/)[0]);

With this one line of code, volume will hold the correct volume value even if the response would
(hypothetically) be: "% & r MV#80\ r".

This would not be possible with a simple substring operation.

Regular expressions, although a bit cryptic, are really great for Pronto communication jobs.

1.3.2. E4X

E4X is a recent addition to JavaScript to reference the increasing amount of internet data that is
presented in XML format. If your Custom Install equipment communicates with XML, then parsing
that data becomes an order of magnitude easier with E4X than it would be with classic regular
expressions.

The XML processing support available in ProntoScript is specified in the [ECMA357] standard.

ProntoScript Developer's Guide

Example 1.2. Processing data in XML format

var incom ngdata =
<body>
<content id="200" title="Now Playing" bg="50" bgfit="s"
menui d="1000" >
<txt align="c" wap="0">Title: <enpSong Title</enp</txt>

<txt align="c" wap="0">Artist: <clr rgb="FOFOF0">Song
Artist</clr></txt>

<txt align="c" wap="0" rgbh="0FOFOF">00: 00: 00</t xt >

</ content >

</ body>;

Then these 5 lines of ProntoScript code will parse it and show the correct information on the screen
of the control panel:

var body = inconmingdata; // <body>...

GUl . wi dget (" PLAYI NG_STATUS") . | abel body. content. @i tl e;
GUl . wi dget (" SONG_TI TLE") . | abel body. content.txt[0];
GUl . wi dget (" ARTI ST_NAME") . | abel body. content.txt[1];
GUl . wi dget (" PROGRESS") . | abel body. content.txt[2];

The result could look like this:

Il H\

V“ i H 1 |,_

Note

If the XML data is stored as a string (for example, because it was obtained from a TCP
socket), it first needs to be converted to an XML object, before it can be accessed as
XML:

var inconingdataText =

"<body>" +

"<content id=\"200\" title=\"Now Playing\" bg=\"50\" bgfit=\"s\"
menui d=\"1000\">" +

"<txt align=\"c\" wap=\"0\">Title: <enmpSong Title</enmp</txt>" +
"
" +

"<txt align=\"c\" wap=\"0\">Artist: <clr rgb=\"FOFOFO\">Song
Artist</clr></txt>" +

ProntoScript Developer's Guide

"
" +

"<txt align=\"c\" wap=\"0\" rgb=\"0FOFOF\">00: 00: 00</t xt>" +
"
" +

"" +
"</content>" +

"</ body>";

var body = new XM_(i ncom ngdat aText);

GUl . wi dget (" PLAYI NG_STATUS") . | abel = body.content. @Qitle;

The exact working of the statements used in the above script will be explained in the next chapters.

ProntoScript Developer's Guide

ProntoScript Developer's Guide

Chapter 2. Core JavaScript

This chapter describes the Core JavaScript features, which ProntoScript shares with other JavaScript-
based environments, such as those found in web browsers.

2.1. Variables

The following examples tell you almost everything there is to know about variables in JavaScript:

var a = 10; /1 declare a and assign integer value 10
b ="Hello, world!'"; /1 declare b and assign a string

/1 (var is added inplicitly)
b = 5; /1 JavaScript is untyped: b is converted

/1 automatically to hold an integer.

If you like more details, please refer to the [Flanagan] book or the [Mozilla] website: http://
developer.mozilla.org/en/docs/Core_JavaScript_1.5_Guide:Variables

2.1.1. Primitive types

JavaScript has 3 primitive types: numbers, strings (of text) and booleans, plus two trivial datatypes:
nul I and undef i ned.

2.1.1.1. Numbers

JavaScript does not distinguish between integers and floating points: all numbers are 64-bit floats.

Here are some examples of numeric literals:

var a = -10000; // integer literal
a = Oxff; /! hexadeci mal literal (decimal 255 :-)
a = 1.797e-308; // floating point literal (e can also be E)

2.1.1.2. Strings

A string is a sequence of Unicode characters.

JavaScript is very flexible and powerful in working with strings, by means of automatic concatenation
and number conversion. Some examples:

msg = "Hello, "+ "World!"; //msg -> "Hello, Wrld!l"

var a = 18;

hex_string = "0Ox" + a.toString(16); //hex_string -> "0x12"
var n = 12345.6789;

.toFi xed(0); //"12346"

.toFi xed(2); //"12345. 68"

.toExponential (2); //"1.23e+4"

.toExponential (4); //"1.2346e+4"

.toPrecision(3); //1. 23e+4"

.toPrecision(6); //"12345.7"

5 3 33335

Some more examples on converting strings to numbers:

var division = "8" / "2"; [/ division is the nunber 4
parselnt ("3 appl es"); /1 returns to 3

par seFl oat ("3. 14 kg"); /] returns to 3.14

par sel nt (" OxFE"); /'l returns 254

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Guide:Variables
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Guide:Variables

ProntoScript Developer's Guide

2.1.1.3. Boolean

As in other programming languages, the boolean type is typically used for representing the result of
comparisons, e.g. in an if-then-else statement.

Again JavaScript is not strict in types here and converts easily between boolean, number and string
when appropriate: The boolean literals t r ue and f al se are converted to 1 and O if used in a
numeric context and to the strings “t r ue” and “f al se” in a string context.

This means that people used to classic C programming can opt for 1 and O to represent On/Off
states of custom install equipment. To advocate a consistent style however, we recommend using the
boolean type explicitly:

var hal | WayLi ghts = false; //Hall Way Light Load, default is OFF

hal | WayLi ghts = getLightStatus();
i f (hallwayLights) {
/1 Hall Way Lights are ON

} else {
/1 Hall Way Lights are OFF

}
2.1.2. Arrays

var a = new Array();
a[0] ;
a[1]
a[2]

"Hi";
{ num5, str:"H " }; //object with two properties numand str

var matrix =[[1,2,3],[4,5,6],[7,8,9]];

As in other languages, JavaScript offers arrays to store a collection of values into one object, which
can be retrieved by a numeric index. The index always starts at 0. Again, being untyped, the type of
these values does not need to be the same for the different values as you can see in the examples.

As a result, Array size allocation is dynamic.

var a = new Array(5);

This creates an array with 5 undefined elements, but it cannot know yet, how much memory to
reserve. Also, extra elements can be added by just assigning a value to it:

a[10] = "abc";

This extends the array to hold 11 elements.

2.2. Operators

JavaScript’s operators are inspired by the syntax of the C - C++ - Java language family.

For people with experience with these there are few surprises. This will be illustrated with some
examples.

2.2.1. Arithmetic operators

ProntoScript Developer's Guide

a =5 + 6 /1 a==11

a=>5%*6; /1 a==30

a=51/ 2 /l a==2.5 11 all nunbers are floats !!

a = parselnt(5/2); [/ a==2

a=>5%2; /1 a==1 (nodul o, or renuninder after division)
i = 1;

a = i++; /] a==1 i==2

i= L

a = ++j; [l a==2 j==

2.2.2. Comparative operators

JavaScript supports =, == and === operators. These can be confusing to novice programmers.

2.2.2.1. Assignment Operator =
a = 5;

This is not a comparison operator, it is an assignment of the right-hand value to the left-hand variable.

Note

Please note this common C-language pitfall, which is also possible in JavaScript.

a = getLightStatus() // returns bool ean true or false
if (a=true) {

myLabel . 1 abel = "Lights are On";
} else {
nmyLabel .1 abel = "Lights are O f";
}
The programmer wanted to write:
if (a == true)
but forgot one '=". Instead of giving a warning or error, JavaScript will just assign t r ue

to &, and evaluate the assignment as always t r ue.

So the test will always succeed, even if get Li ght St at us returned f al se.

2.2.2.2. Equality Operator ==

This is the operator that is used to compare for equality. Again, since JavaScript is untyped, it will use
a "relaxed" form of "sameness" that allows type conversion.

a = getLightStatus() // returns boolean true or false
if (a=="1") {

}

This will give the result the programmer intended, as " 1" and a will be converted to the number 1
and then they will successfully be compared.

In most cases, this relaxed comparison is sufficient. However, the automatic type conversion can lead
to subtle bugs; to avoid these, use the Identity operator (===).

2.2.2.3. Identity Operator ===

true === "1" will evaluate to f al se as both are not identical because they are not of the
same type.

ProntoScript Developer's Guide

The most practical use is if you really want to distinguish between undef i ned (declared but never
assigned a value) and nul | (not a valid object)

var a = new bj ect;

myLabel .1 abel = (a.b === undefined); // evaluates to true
a.b =null; // or a.b = soneFunction() that returns null
myLabel .1 abel = (a.b === undefined); //evaluates to false
myLabel .1 abel = (a.b === null); /levaluates to true

2.2.3. Bitwise operators

Bitwise operators require integers, so JavaScript will implicitly convert numeric values to 32-bit in-
tegers before proceeding.

/1 Bitw se AND
0x1234 & OxO00FF // -> 0x0034: used typically for masking

/1 Bitw se OR

0x02 | 0x8 | 0x10
// 0000 0010 | 00OOO 0100 | 0001 0OOO -> 0001 1010
/'l use to set bit field registers

/1 Bitw se NOT
~0x0f // -> OxfffffffO or -16, typically used for flip-flops

2.3. Statement blocks

Statement blocks or compound statements are formed by adding curly braces around a set of state-
ments. It allows you to add multiple statements in constructions where only one statement is allowed:

{
a = b;
b = 6;
c =a+b;
}

2.4. Control flow

For controlling the flow of program execution, JavaScript has the following set of constructs:
* iflelse

* switch

* while and do/while loop

* for and for/in loop

¢ break and continue statements

2.4.1. if/else

i f (expression)
statenent 1
el se
statenent 2

10

ProntoScript Developer's Guide

The last two lines above are optional.

Example 2.1.i f /el se

if (counter > 5) {
/! counter limt reached

} else {
counter = counter + 1;
}

2.4.2. switch blocks

switch (expression) ({

case val ue:
statenents
br eak;

case val ue:
statenents
br eak;

defaul t:
statenents
br eak;

}

Example 2.2. swi t ch block

var dayNane;
switch (dayNumber) {

case O:
dayNane = "Sunday";
br eak;

case 1:
dayNane = "Monday";
br eak;

case 2:
dayNane = "Tuesday";
br eak;

case 3:
dayNane = "Wednesday";
br eak;

case 4:
dayNane = "Thursday";
br eak;

case 5:
dayNane = "Friday";
br eak;

case 6:
dayNane = "Saturday";
br eak;

defaul t:
dayNane = "Unknown";
br eak;

Note

1"

ProntoScript Developer's Guide

The JavaScript version of the Swi t ch statement is more flexible than in classic lan-
guages: the expressions used between the () and after case, can be of any form and
type. They are evaluated and compared at runtime. It also means that they execute less
efficiently than compile time versions of C, C++ and Java.

2.4.3. while loops

whi | e (expression)
st at enent

Example 2.3. whi | e loop

var i = 0;
while (i < 10) {

i ++;

Di agnostics.log(i);
}

2.4.4. for loops

for (initialize ; test ; increnent)
st at enent

Example 2.4. f or loop

var i;
for (i =0; i <10; i++) {
Di agnostics. |l og(i);

}

for (variable in collection)
st at enent

Example 2.5.f or /i n loop

var nessages, i;
messages = ["one", "two", "three"];
for (i in messages) {

Di agnostics. |l og(i);

}
2.4.5. break statement

The br eak statement causes the execution flow to exit the enclosing loop or swi t ch statement.

2.5. Exceptions

Explicit exception handling is a proven technique to keep robust code simple and easy to maintain.
You do this by separating the code that references error cases from the regular flow of the application.

A relevant example is to reference the possible exception you get when executing a Pronto button
action list in an asynchronous timer callback. Only one action list can be executed at a time and it is
possible the user just pressed a button when the timer expired.

12

ProntoScript Developer's Guide

Example 2.6. Exception
Activity.schedul eAfter (1000, timerTick);

function tinerTick()

{
try {
CF. wi dget (" MY_BUTTON", "MY_PAGE") . execut eActi ons();
} catch (e) {
Di agnosti cs. | og("System Busy executing actions");
} finally {
Activity.schedul eAfter (1000, timerTick);
}
}

2.6. Functions

function funcname([argl [,arg2 [..., argn]]]) {
statenents

}

In JavaScript, functions serve several purposes:

* Define a chunk of functionality but don't execute it yet.

» Execute it at a later stage by calling the function.

* Encapsulate logic into organized, reusable blocks.

* Change the behavior of a particular function by passing parameters (arguments) to it

» Speed up execution as the function is compiled once, when it is defined: it does not need to be
recompiled.

* Advanced: as a closure, to restrict the scope of a variable. (JavaScript does not have block scope,
so a function is the only way to have "private" variables)

* Advanced: allow the programmer to write (pseudo) classes for OO programming.

* Advanced: register the function reference as an asynchronous callback, to be executed by the
system at a later stage.

2.7. Objects

An object is a collection of named values, called properties. The ProntoScript APl offers many useful
objects to the programmer

var nyButton, nyButtonText;

myButton = GUI . w dget ("MY_BUTTON") ;

myButtonText = nmyButton.label; // use the |abel property
/] of the button class

You can also define your own objects.

This is useful as objects allow you to better structure your code by encapsulation: grouping data and
functionality that logically belong together into a single object.

13

ProntoScript Developer's Guide

Example 2.7. Custom Obj ect creation

var nyReceiver = new bject();
nmyRecei ver. brand = "MBrand";
myRecei ver . nodel = "M/Model ";

nmyRecei ver . mast er Vol une = 60;

myRecei ver. source = "DVD';

nmyRecei ver. volumeUp = function() { this.masterVol une++; };
myRecei ver . vol umeUp() ;

myPanel . | abel = nyReceiver. masterVolunme; // shows 61

2.8. Built-in functions

Built-in Core JavaScript functions

decodeURl
Decodes a URI (such as the URLs used for HTTP resources), replacing

the escape sequences used in them with the actual characters those
escape sequences represent.

decodeURI Conponent
Decodes a URI component; analogous to decodeURI, but intended

for URI components, not entire URIs

encodeURl
Encodes a string as a URI, replacing characters not allowed in a URI

with escape sequences.

encodeURI Conponent
Encodes a string as a URI component, replacing characters not allowed

in 2 URI component with escape sequences. Similar to encodeURI ,
but also escapes the :,/ and # characters which delimit components

of a URL.

escape
A deprecated method to encode a URI. Use encodeURl or en-
codeURI Conponent instead.

eval
Compiles and executes a string as a script, returning the result of that
script.

isFinite
Tests if a value can be converted to a number, and is not negative or
positive infinity.

i sNaN
Tests if a value can be converted to Nurrber . NaN, which is a special
value representing an illegal number.

par seFl oat
Interpret a value as a floating-point number.

par sel nt
Interpret a value as an integer number.

unescape
Decodes values generated with the escape method.

uneval

Converts a function to a string.

14

ProntoScript Developer's Guide

2.9. Built-in classes

Built-in Core JavaScript classes

Array

Bool ean

Dat e

Error

Eval Error

Function

vat h

Nurber

nj ect

RangeErr or

Ref er enceErr or

RegExp

String

Synt axError

TypeError

URI Er r or

Class implementation of an array.

Representation of a boolean value.

Representation of a date/time instance; in ProntoScript, this time instance
is not the same as the user-visible time (which can be adjusted on the fly),
but instead provides a monotonic clock, which can be used for timers and
timeouts.

Generic error exception class

An error thrown for dynamic script evaluation failures.

Class implementing functions, which in JavaScript are a special kind of objects.

Provides various mathematical functions and constants.

Representation of a numeric value.

Base object class, from which all other classes and objects are derived.

An error typically thrown when parameters are outside of an allowed range.

An error typically thrown when a variable is used which is not defined.

Representation of a regular expression.

Representation of a text string.

An error thrown by the JavaScript engine when a syntax error is encountered.

An error typically thrown when some value is not of the expected type.

An error thrown when a failure is encountered while processing a URI.

Built-in E4X JavaScript classes

Namespace

Representation of an XML name space, which can be used to obtain elements from
an XML object which are not in the document's default namespace.

QNarmre

15

ProntoScript Developer's Guide

Representation of a qualified XML name, as obtained using the nane method of an
XML object instance.

XML
Representation of an XML document or fragment.

2.9.1. Regular Expressions

See chapter 11 in [Flanagan]. Also a lot of information and examples can be found on the Internet.

2.9.2. Math object

The Mat h object gives access to a number of useful mathematical constants and functions.

Example 2.8. Mat h

Mat h.floor(2.5); // -> 2
Math.ceil (2.5); //-> 3

Mat h. abs(-3); //-> 3
Mat h. randon(); //->(pseudo) random nunber between 0.0 and 1.0

Math.Pl; // -> 3.141592653589793

16

ProntoScript Developer's Guide

Chapter 3. Widgets

In the editor a page is composed of a number of graphical objects, called widgets. These widgets can
be manipulated from a script to create a more dynamic user interface. The most obvious widgets are
buttons and panels, but also hard buttons are considered as widgets because they share a number
of properties with (soft) buttons.

All widgets have a tag, which is a unique identification string that is needed in order to get access to
it from a script. Imagine you created a new configuration file with one panel on the home page: by
default, it will display a white rectangle. Now, change its tag by putting the text "VOLUVME" (without
quotes) in the ProntoScript Name field in the Advanced tab of the property dialog for the panel:

B ProntaE dit Professianal 2 - [Untitled xcf*] = Eem ==

File Edit View Insert Project Tools Help

ZeadB | N | ‘ =] ‘ﬂS\mu\ator % Download [g My Database

Praject Overview B X | “Z¥Home-Home Page - % | Panel Properties 1 x

. = L= Lo - Label | Appearance | Advanced

AlLe G0 NN T T Z

=g, System ProntoScript Propertiss

Reusable Macios

= {& Home 5 PrantoSeript Mame: YOLUME]

JACUV\QJ Properties ivity Name 1/1 55 Dete_Tims. 2 il
ﬁ Home Page Use thiz name to access this [tem from a ProntoScript
.. From Page Timer o Button Script to dynamically change the
Label of 5 Panel with ProntaScript Mamme "MyPanel" use;
CF.widget]"MyPanel1").label = "Hello \warld!"

Building Blocks 3 x

Equipment & Codes | Graphics Gallery | ProntoS cript Modules I ProntaScript Libraries

R

Project Components: Companent Functions: Select Extender:

Extender Type
Extender 0 RFX3400
o m] »
Select Port
Companent Location: Add Extenders to Froject.
[Panel [Position: 5, 5 [size: 9459

Warning

Often the tag or ProntoScript Name of a widget is confused with the label. Remember
that the tag is the invisible name of the widget and the label is the text that is displayed
in the widget.

In the page properties dialog of the Home page, go to the Advanced tab and in the Page Script input
field, put the following line:

17

ProntoScript Developer's Guide

Page Properties q x
Label | Advanced

ProntoScript Properties

ProntaScript Mame: HOME

@ Execute once when page is shown

() Repeatevery 100 | zecs

FPage Script:
var w = widget["OLUME");

Save to File] [Reload from File]

This one line of code looks in the page for a widget with the tag "VOLUME". It finds the panel and
stores a reference to it in variable w.

Note

The tag is case sensitive, so "VOLUVE", "Vol une" and "vol unme" are considered dif-
ferent tags! Therefore, try to be consistent when using uppercase and lowercase.

Tip

T

A recommended convention is to use UPPERCASE for tags and | ower Canel Case
for variables.

Once you have a reference to a widget, you can manipulate its properties. The next paragraphs will
show you some exciting examples for the different widget types.

3.1. Panels

The simplest widget type is a panel. Panels are placeholders for text and/or images. Until now you
used it to display text somewhere on a page, or to put some nice graphics on the background. Now,
with ProntoScript, the panels become dynamic. They can now show the state of the system, just
like the special widgets, called System Items that you are used to seeing on the system page. For
example the battery and WiFi widgets show a different image depending on an internal variable. The
Activity Name widget shows the name of the current activity but sometimes also shows strings like
"Connecting..." or "Command failed".

3.1.1. Change the label

The label can be used for example to show the amplifier volume, the current tuner frequency or
the currently playing song title.

18

ProntoScript Developer's Guide

With the above page script, a reference Wis retrieved, to a panel with the tag “VOLUVE”. In order
to show a real dynamic value on it, some code can be added to the page script to create a variable
to contain this value:

var w, vol une;

w = w dget (" VOLUME") ;
vol ume = 0;

w. | abel = vol une;

When this is downloaded to the control panel, and the page is displayed, the panel will show "0"
immediately. This is because the page script is executed already before the page is really displayed.
So the labels of all widgets on a page can be properly initialized in the page script of that page.

Note

The volume, which is an integer number, is automatically converted to a string when
assigning it to the label property of the widget variable w.

Now, let's change the volume. In the Home Properties, select the VOL+ button.

Note

In ProntoEdit Professional 1.x, you first have to select the Hard Buttons tab before being
able to select a hard button.

Unselect the "Use System Page Actions" checkbox. Then click on the ProntoScript icon to show the
script input field. Add the following code:

4* Home - Home Page)/@ Home] » x | Hard Button Properties 1 x
[Use System Properties

= | Tsuseno -
Actions | g dvanced
- aelzsx @
wolume++;
| w.label = volume;
% .
T
[Save to Fils] [Reload from File]

This little script increments the volume variable and updates the label of the volume panel with the
new value.

Note

vol une and wdo not need to be declared again in the button.

Variables that are declared in the page script can be accessed from all the button scripts
on that page.

In the same way, the following code can be added to the VOL- button:

vol une- -;

19

ProntoScript Developer's Guide

w. | abel = vol une;

Now download this to the control panel and play with the VOL+ and VOL- buttons. You will see
that the value displayed in the panel will count upwards and downwards accordingly.

3.1.2. Change the position

It is just as easy to change the position of the panel. Just change the value of the propertiest op and
| ef t. As an example, put the following code to the cursor arrow keys:

Cursor up:
w.top -= 10;

Cursor down:

w. top += 10;
Cursor left:
w. left -= 10;

Cursor right:
w. left += 10;

Download to the control panel and play with the cursor keys and see the volume walk around the
screen. Confirm that you can move the panel completely off the screen.

3.1.3. Hide and show

You can hide and show the panel as you wish. The panel has a property called vi si bl € . When
writing t r ue or f al se to it, you are directly in control of its visibility. In the example, put the
following script in the OK hard button:

w. visible = 'w visible;

The not (!) operator negates the value that comes after it. Can you predict what will happen when
you press the ok button when you download this to the control panel?

3.1.4. Label appearance

Various aspects of a label's appearance can be controlled using ProntoScript, corresponding to the
label properties set in the editor:

* The bold and italic canbetrue orfal se, and control the text style rendering.
* Label alignment within the panel can be controlled using the hal i gn and val i gn properties.

hal i gn can be set to either “cent er ”, “l ef t ” or “ri ght ”. Similary, val i gn can be set
to either “cent er ”, “t op” or “bot t ont.

* The font and font Si ze properties define the font used to render a label.
The f ont must be set to the filename of a font which is included in the configuration. The easiest

way to ensure this, is to add a panel to the configuration using the desired font, and retrieving that
panel's f ont property to change another widget's font.

20

ProntoScript Developer's Guide

If a font is requested which is not available in the panel configuration, the default font will be used
instead.

3.1.5. Size

A panel's size can be controlled using its Wi dt h and hei ght properties.

The size needed to render a label (using the current font, font size and text style), can be obtained
using the get Label Si ze method of a panel or button. This function returns an array containing
the width and height needed to render the specified text on the widget:

/1l Set a label, and resize the panel to fit the | abel exactly
var size,w

w = GUI.w dget (" MYLABEL");

size = w. getLabel Si ze("Hell0");

w. | abel "Hel | o";

w. Wi dt h size[0];

w. hei ght = size[1];

3.1.6. Changing the image

When you want to have a panel with dynamic graphics, you have two options.
The first option is to create a separate, hidden page in the same activity and attach each image you

want to display to a separate panel in this activity. Give the hidden page a label and a tag, for example
"RESOURCES". Give the panels tags like "VOLUMEQ", "VOLUMEL", etc.

Now these images can be accessed:

functi on showol unme()

{
var v;
w. | abel = vol une;
v = widget ("VOLUVE" + vol unme, "RESOURCES");
if(v) {
w. set | mage(v. getl mage());
}
}

This code copies the image of one of the resource panels to the volume panel. Especially note
the validity check on Vv: if the widget is not found, v will not be a valid widget reference and
v. get | mage() would throw an exception causing the script to be aborted. The i f (V) makes
sure the image is only copied when v is not nul | .

The stretchl mage property can be used to automatically resize the images in a widget. In the
above example, this can be done by adding the following line:

wi dget ("w').stretchl nage = true;

Remember that this is a property for a widget and not an image! So when you call this property once,
all images in this widget will be rescaled to fit the widget size. If you do not set the st r et chl mage
property, or set it to f al se, the image will not be scaled. This means that if your image is larger
than your widget, a part of the image will not be visible. If the image is smaller than the widget, a
part of the widget will be empty.

When you use stretchl mage for a button, both the pressed state and the released state im-
ages are stretched if stretchl mage is set to t r ue. And the last thing you should know about

21

ProntoScript Developer's Guide

stret chl mage is that when you copy a stretched image, you will get the original image from the
widget. So no data is lost!

The second option to make a panel with dynamic graphics is by dynamically creating the images. This
allows you to get the images from a web server or even construct the images yourself, pixel by pixel!

In the example configuration above, in the button scripts for VOL+ and VOL-, replace the line:
w. | abel = vol une;
with the line:

showvol une() ;

3.1.7. Modifying panel colors

The background color of a panel which does not have a background image can be controlled with
the bgcol or property.

Similarly, the text color for a panel's label can be set using the col or property.

The value used to set the color is a hexadecimal representation of the blue, green and red color
components (similar to the way colors are set in HTML web pages).

w. bgcol or 0x0000ff; // Red
w. bgcol or 0x00ff00; // Geen
w. bgcol or = 0Oxff0000; // Light Blue

w. col or = Oxffff00; // Turquoise
w. col or = Ox00ffff; // Yellow
w. col or = Oxef358e; // Purple

3.1.8. Changing background transparency

The transparency of a panel which does not have a background image can be controlled with the
t ranspar ent property. Setting this property tot r ue causes the panel background to be trans-
parent. Setting this property to f al se causes the panel background to be opaque.

In the example, put the following script in the OK hard button:

w. transparent = fal se;

Pressing OK will now cause the panel wto be rendered with an opaque background.

3.2. Buttons

Buttons are put on a page to create a clickable area. So, you created a button, attached two images
to indicate its released and pressed state and gave it a label to be displayed on it. And, of course,
you attached actions to it. This is as far as you could go with the traditional Pronto buttons. With
ProntoScript, there is a lot more which can be done with buttons, as shown below.

3.2.1. Button scripts

Next to actions, a button script can be defined for a button, using the editor. If a button script is
defined, this script will be executed when the button is pressed, instead of the actions set in the editor.

22

ProntoScript Developer's Guide

Example 3.1. Toggle button

A toggle button is a button that can show two (or more) states. For example, in your "Watch TV"
activity, you want to remember if you entered EPG mode or not.

First, create an activity variable to hold this state by declaring it in the activity script:

Activity Properties q x

| Label | Appearance | .&u:tiu:uns| Advanced | PS Libraries

ProntoScript Properties

FrontaS cript Mame:

Activity Scrpt:

var epgln = falze;

Save to File] [Feload from File]

Then, when the page with the button is displayed, it should be properly initialized in the page script:

var w = wi dget ("MY_BUTTON") ;
w. | abel = epgOn ? "On" : "Of";

This locates the button and then gives it the label "On" when epgOn equals t r ue, and "Off" oth-
erwise.

Now, in the button script, some code can be put to toggle the state and show it:

epgOn
| abel

' epgOn;
epgn 2 "On" : "OFf"

3.2.2. Press and release

The onPress and onRel ease properties on a button can be set to a function which will then
be called when the button is pressed or released. For button presses, if both a button script and

an onPress function is set, the button script will be executed first, followed by the onPr ess
callback.

23

ProntoScript Developer's Guide

Example 3.2. Info popup

Suppose you want a popup window to be displayed for as long as you press a button. This can be
done by defining an onRel ease function. Create a panel with the desired image and text and give
it a tag "I NFO'. In the page script, get a reference to the panel and make it invisible by default:

var info = GU .w dget ("I NFO');
info.visible = fal se;

Then, program the GUIDE hard button with a little script to show the info panel when it is pressed:

var b = QU .w dget ("PS_GU DE");

b.onPress = function (x,y) {
info.visible = true;

}

b. onRel ease = function () {
info.visible = fal se;

b

3.2.3. Continuous presses

If you want an action to be repeated for as long as a button is pressed, you can define an onHol d
function in the button script. Also set the onHol dI nt er val property to the number of millisec-
onds between two repeats.

Example 3.3. While-pressed counter

To implement a counter which is incremented as long as a button is pressed, put the following in
a page script:

var w = GUl .w dget ("MY_BUTTON") ;
w. onPress = function(x, y) {
this.counter = O;

w. onHol d = function() {
t hi s. count er ++;
this.label = this.counter + " seconds";

}s

w. onHol dl nt erval = 1000; // nsec

Download this to the control panel. Then, press the button and keep it pressed. Do you see the
label counting the seconds? What happens after 30 seconds? It will stop counting! This is because
of a safety mechanism built into the Pronto software. If it detects a button being pressed (stuck) for
more than 30 seconds it stops the associated action.

3.2.4. Motions

An onPress callback is invoked with the x/y coordinates of the press location (relative to the
button's top-left corner). If you are also interested in changes in the touch location while the button
stays pressed, the onMbve property of a button can be set to a function which will be called with
the coordinates of the changed press location.

24

ProntoScript Developer's Guide

Example 3.4. Position tracker

var w = GUl.w dget ("MY_BUTTON") ;
w. onPress = function(x, y) {

Systemprint("Pressed @" + x + "," +Y);
}
w. onMove = function(x, y) {
Systemprint("Mved to " + x + "," +y);
b

w. onRel ease = function () {
System print (" Rel eased");
ik

3.2.5. Button colors and images

As for panels, a button image can be set using the set | mage() method. However, since a button
has two states (released and pressed), a second parameter is needed to indicate which image to set:

function setButtonl mages()

{
var v;
v = w dget (" RELEASED', "RESOURCES");
if(v) {
w. set | mage(v. getl mage(), 0);
}
v = wi dget (" PRESSED', "RESQURCES");
if(v) {
w. set | mage(v. getl mage(), 1);
}
}

As with panels, the current background and text colors can be set using the bgcol or and col or
properties. However, as soon as the button changes from being released to pressed, or vice-versa,
the button colors are again set to those specified in the configuration file.

This is where the set BgCol or () set Col or () methods can be used. These methods accept
two arguments: a color, and a state parameter (0 for the released state, 1 for the pressed state):

function setButtonCol ors()

{
/1 Set colors for released button state
w. set Col or (Oxf f 0000, O0);
w. set BgCol or (0x00f f 00, 0);
/1 Set colors for pressed button state
w. set Col or (0x00f f 00, 1);
w. set BgCol or (0x0000ff, 1);

}

3.3. Hard buttons

The hard buttons are different from the buttons described above in the sense that they do not have
any graphical properties like label, image, visible, etc. What you can do however is define some
onHol d or onRel ease functionality for them. In order to get access to the hard buttons, some
predefined tags are available. See Appendix D, Predefined tags for the full list.

3.4. Firm keys

Firm keys are the five hard buttons on the bottom of the LCD display with the corresponding buttons
right above them. They have an image, a label, position etc. just like other buttons, but they are

25

ProntoScript Developer's Guide

special. The editor does not allow you to define a tag for them. Instead, you can get access to them
using the predefined tags PS_FI RML etc.

In the editor you can only define the firm key behavior on activity level, so normally the firm keys are
the same for all pages in one activity. Scripting allows you however to make them look different on
each page by changing their labels or even their images or position in the page script:

var firnml = GUJ .w dget ("PS_FI RML");

firm.|abel = "Bl abla";
firml. onPress = function (x,Y)
{

/1 put your firmkey code here

}

For an extensive list of all the Widget properties and methods, please refer to Appendix A, ProntoScript
Classes Description (ProntoScript API).

3.5. Dynamic widgets

Widgets can also be created on-the-fly, without being defined in advance in the panel configuration.
For this, the static GUI . addButton() and GUI . addPanel () methods can be used. These
will create new buttons or panels on top of those defined in the configuration file, in the current Ul
(they will be lost as soon as the current page is left).

These methods do not take any arguments, and the created widgets are not visible by default.

Example 3.5. Dynamically created button

var w,
w = GUl . addButton();

w. set Col or (0x000000, O0); [* Black */

w. set BgCol or (0x701919, 0); /* Mdnight Blue */
w. set Col or (0x000000, 1); [* Black */

w. set BgCol or (0x00a5ff, 1); /* Orange */

w. left = 10;
w. top = 100;
w. wi dt h = 80;

w. hei ght = 30;

w. font Si ze = 20;
w. | abel = "Go!";
WwW.Vvisible = true;

26

ProntoScript Developer's Guide

Chapter 4. Action Lists

One thing all widgets except panels have in common is that you can define a list of actions for them
in the editor. This includes sending infrared codes, performing page jumps, playing of sounds, etc.: a
lot of interesting stuff you also might want to do from ProntoScript.

41. Execution action lists

The executeActions() and schedul eActions() methods of widget objects (such as
buttons), can be used to execute these actions.

The difference between these two methods is that execut eAct i ons() will execute the actions
synchronously, resuming script execution only when the actions are completed. The schedul e-
Actions() method however, will execute the actions in the background, and script execution
resumes immediately after invoking the schedul eActi ons() method.

For example, a button can be created that sends the infrared codes only when the button is pressed
for at least one second by putting the following code in its script:

Example 4.1. onHol d

onHol d = function()
{

)¢
onHol dl nterval = 1000; // nsec

execut eActions();

This example first defines an onHol d function that invokes the action list. This function then is
executed one second later.

Another example is the EPG toggle button that sends different infrared codes to enter and exit EPG
mode. For this, generate two buttons with the different infrared codes, tag them "EPG_ON" and
"EPG_OFF" and put them on a separate page tagged "I RCODES". Then adjust the toggle button
script to do the trick:

Example 4.2. schedul eActi ons()

epgOn = !epgOn;

| abel = epgOn ? "On" : "Of";
page(" | RCODES") . wi dget (epgOn ? "EPG ON' : "EPG OFF").schedul eActions();
Note

Action lists can not be executed in parallel. This means that when a script calls the
execut eActi ons() method while an action list is already being executed currently,
an exception will be thrown.

When the calling script requires the action list to be executed, it is advised to use
schedul eActi ons() instead.

Tip

"

Calling execut eActi ons() will not work from within a page script. This is due to
the restriction that the control panel cannot play multiple action lists at the same time
and a page script is always executed after a page jump action within an Actionlist.

27

ProntoScript Developer's Guide

Again, schedul eActi ons() can be used instead, to avoid this problem.

4.). Reusable macros

ProntoEdit Professional 2.4 allows reusable macros to be included in a configuration. These are avail-
able in ProntoScript as an activity with the predefined “PS_MACROS” tag, containing pages corre-
sponding to the macro categories.

Individual macros are available as W dget objects in these "pages™:

Example 4.3. Executing a reusable macro

/1 Execute the macro tagged "EPG ON'
/1 in the macro category tagged "G.OBAL".
CF. wi dget ("EPG_ON', "GLOBAL", "PS_MACRCS").schedul eActions();

28

ProntoScript Developer's Guide

Chapter 5. Timers

ProntoScript provides three mechanisms which can be used for delaying execution of scripts:

* Fully blocking waits with the del ay() method,
* page timers, and the

+ schedul eAfter() method.

5.1. Blocking wait

Sometimes you need some time between two script statements. The Syst em del ay() function
can be used for that. Just pass the desired number of milliseconds as a parameter. For example, you
want a button that turns on the hallway light and automatically turns it off after 10 minutes. You can
do this with the following button script:

Example 5.1. Blocking wait

page(" | RCODES") . wi dget ("HALL_LI GHTS_ON') . execut eActi ons();
Syst em del ay(10*60*1000); // nsec

page(" | RCODES") . wi dget ("HALL_LI GHTS_OFF") . execut eActi ons() ;

Download this to your panel, press the button and sit back and wait... This should block the control
panel for a full 10 minutes.

Note

When executing this script, the screen of the control panel looks frozen. The control
panel will not respond to any key presses during the 10 minute delay.

Hence, using Syst em del ay(. .) is typically not a good idea for user-noticable de-
lays (more than 100 milliseconds).

5.2. Page timer

The editor allows you to mark a page script as repetitive. This feature can be used to count down
until it is time to turn off the lights.

First declare a counter in the activity script:

var hal |l Li ghtsTi mer = 0;

Then, in the button script, turn on the lights and start the timer by setting the counter. Setting it to
10 seconds instead of 10 minutes allows for quicker testing:

var w = page("| RCODES").wi dget ("HALL_LI GHTS_ON");
w. execut eActions();
hal I Li ght sTimer = 10; // seconds

Finally define a page script to be called every second to decrement the counter and turn off the hall
lights if the counter reaches zero:

29

ProntoScript Developer's Guide

Page Properties q x
Label | Advanced

ProntoScript Properties

FrontaS cript Mame:

(71 Execute once when page is shown

@ Repeatevery 100 2 zecs

FPage Script:

war halllights T imer, w;
if [hallLightsTimer > 0] 4
hallLightsT imer--;
if (hallLightsTimer === 0] {
w = pagel"IRCODES | widget"HALL_LIGHTS_OFF"):
w.executesctions]]]

[Save to File] [Reload from File]

Now try this on your control panel. Do you notice that the control panel is fully operational while
the timer is running? In fact, you don't even notice it. Except for the hall lights being on, you have no
indication that the page script in fact is activated every second. Maybe it is a good idea to show a little
icon somewhere on the screen to indicate that a timer is running. Or maybe after each decrement
of the counter update the button label with the remaining time:

hal | Li ght sButton.|abel = hallLightsTimer + " sec";

This implementation using the page timer has a number of drawbacks: You normally want to put a
lot of code in the page script but you probably don't want all of this code to be repeated continu-
ously. There is only one page timer. If you need multiple timers you will need to use the sched-
ul eAfter () function discussed in the next section.

5.3. scheduleAfter()

A more sophisticated way to reference the hall lights timing is to use the third timer mechanism:

schedul eAft er () . This method of the Activity class allows you, as the API reference states
in Appendix A: "to program a function to be executed once after a certain time". This requires a
function which turns off the lights, and a call to schedul eAfter () to trigger it, as shown in
the following button script:

Example 5.2. schedul eAfter ()

page(" | RCODES") . wi dget ("HALL_LI GHTS_ON') . execut eActi ons();
function hallLightsOf()

{
page(" | RCODES") . wi dget ("HALL_LI GHTS_OFF") . execut eActi ons();

}
schedul eAft er (10*60*1000, hal |l Li ghtsOfif);

5.4. Behavior during sleep mode

30

ProntoScript Developer's Guide

When the control panel is asleep, all timers are stopped. This includes the page timer and the sched-
uleAfter timer. When the control panel is woken up again, the timers are resumed.

There are two exceptions in which the control panel does not go to sleep:

* The control panel is put into the docking. While the control panel is powered there is no need
to save battery consumption.

* The control panel is connected to a PC with a USB cable. In this case the control panel cannot go
to sleep because it needs to respond to USB messages.

In these cases the screen of the control panel will be turned off, but the timers keep running as
expected.

You can also configure the screen to be always on. To do this, enter settings by pressing and holding
the settings icon for three seconds. Then on the second tab, increase the value below the text "Turn
screen off after:" until it displays "On".

31

ProntoScript Developer's Guide

32

ProntoScript Developer's Guide

Chapter 6. Levels, scope and lifetime
6.1. Levels

A configuration file is a hierarchy of a number of activities or devices, each consisting of a number of
pages, each having a number of buttons and panels. The editor shows this hierarchy in its tree view.
You can attach scripts to all levels within this hierarchy: activity, page and button.

6.2. Scope

The preceeding chapters already covered several code snippets and mentioned scope once or twice.
This section covers this subject in more detail.

6.2.1. Local scope

When you declare a function or variable in a button script, it will be known only in that script. That
is called local scope.

6.2.2. Page scope

But when you declare something in a page script, it will be known in all the button scripts on that
page. So you can declare a variable like epgOn in a page script and use it in a button script on that
page. The other pages however cannot access this variable in any way: that is page scope.

6.2.3. Activity scope

Everything declared in an activity script is known in all the page scripts and button scripts of that
activity. So if you declare a function like the onFi r nL() at activity level you can call it from the firm
key scripts in that activity but also from any of the page scripts of that activity as well as from any
button script on any of the pages of that activity. But the function cannot be accessed from other
activities and when you switch to another activity, all declarations and definitions are destroyed.

The advantage of this mechanism is that if you have two activities, they can use the same names in their
scripts without interfering with each other. But sometimes you want to explicitly share information
with other activities, or store some persistent data so that you can restore the state of the activity
after switching to another activity and back.

For these cases, system globals can be used.

6.2.4. System globals

System globals allow information to be used by multiple activities. You can store a string globally
using the System set d obal () method and retrieve it with the Syst em get G obal ()
method.

6.3. Lifetime

The lifetime of a script object is the time that the function, variable or class remains defined after its
declaration. This is defined by the time that the scope, in which the object is declared, remains active.

In ProntoScript, all scopes remain active as long as the activity remains active. This means that variables
set in one page will still have their values retained when coming back to that page.

33

ProntoScript Developer's Guide

34

ProntoScript Developer's Guide

Chapter /. Activities and Pages

A few examples of page and activity scripts have been covered in previous chapters. This chapter
discusses these two script types in more detail.

7.1, Activity script

The activity script is executed when you 'enter the activity'. This means when a page of the activity
is about to be displayed, and the previous page was not part of this activity.

The activity script is executed just after the activity is initialized, but beforean acti vity. onEntry

callback, and before the page script is executed. The page objects are not created yet. (so never use
GUl . wi dget () at Activity level!)

711, Usage

The activity script can be used to initialize an activity, to define objects, functions and variables that
need to be used on all its page scripts. It also typically defines any parameters of the activity.

If functionality needs to be executed only the first time the activity is entered, a global variable can

be declared to check whether the activity script is already executed or not. For example, you have
an activity "Listen to iPod" and you want to initialize it the first time you connect to it:

Example 7.1. Syst em set G obal () / Syst em get d obal ()

if (Systemgetd obal ("ListenlPod.Initialised") === null) {
/1 performfirst time initialisation
System set d obal ("Li stenl Pod. I nitialised", "true");
}

Be aware that since the page objects are not created yet, it is not possible to show any feedback to
the user here. This should be done in the page script, or a page. onEntry callback function.

/7.1.2. Home activity

A special activity is the Home activity, since it is the first activity that is selected after the control
panel is powered or after a configuration file download. The Home activity script should contain the
definitions needed in all pages of the Home activity. Besides that, it can also be used to initialize the
global variables stored in the Syst emclass.

Note

The editor does not allow renaming the Home activity? With ProntoScript you can
(although it is not recommended). Just add this line to the Home activity script:

| abel = "Lobby";

7.1.3. Rotary wheel

Rotations from the rotary wheel can be handled in ProntoScript using the onRot ary callback
function. It allows you to capture the movement of the rotary wheel and take actions accordingly.

onRotary = function(clicks)

35

ProntoScript Developer's Guide

// put your code here

b

To know in which direction the user turned the wheel, cl i cks is positive for clockwise and negative
for anticlockwise rotations. To let the programmer know when the user stops turning the rotary
wheel, the last value of cl i cks is always a single O.

/.1.4. Advanced rotary wheel example

With the ability to use the rotary in your ProntoScript you can easily browse through lists. A good
example is controlling a music player. Of course, when there are a lot of items in the list, you don’t
want to scroll for too long before reaching the last item. So in this paragraph we’ll show you how
you can implement an acceleration algorithm by using a weighted exponential function, getting you
even faster to the correct item in the list.

The acceleration algorithm makes use of some mathematical functions:

* Mat h. abs calculates the absolute value of its argument. (e.g. the result of Mat h. abs(- 3) is 3)

* Mat h. exp calculates the exponential value of its argument. (e.g. Mat h. exp(3) equals ¢’ and
has as result 20,08)

To change the result of the Mat h. exp back to an integer value, the function par sel nt can be
used (for example, the result of par sel nt (3. 25) is 3).

In the code below, the result of the function will be stored in the variable accCl i cks, standing for
accelerated clicks. As you can see in the code the absolute value of clicks is calculated first, and stored
in the variable absCl i cks. This allows us having the same code for both positive and negative values
of clicks. But when doing this, the sign has to be put back at the end of the function!

In the first i f statement, a test is performed to see whether the number absCl i cks the rotary
moved is bigger than 2. This is done because if it is less, the user probably doesn’t want to scroll very
fast through the list. If the result is bigger than 2, exponential acceleration is used and the following
value is calculated:

e(absClicks—l)

(absClicks—1)

resulting in a smooth acceleration.

If the number of clicks was less than or equal to 2, the result is always changed to 1 (with respect to
the sign of clicks). This way, the user is scrolling slowly through the list, just as he expects.

36

ProntoScript Developer's Guide

Example 7.2. onRot ary

onRotary = function(clicks)
{
var accd i cks,
absd i cks,
tenp;
absd i cks = Math. abs(clicks);
if (absCicks > 2) {
temp = absdicks - 1;
accC icks = parselnt((Math.exp(tenp)) / tenp);

if (clicks < 0) {
accCicks = -
}

} else {

if (clicks > 0) {
accdicks = 1;

} elseif (clicks <0) {
accdicks = -1;

} else {
accC i cks

}

accd i cks;

0;
}

/* use the accelerated clicks (accCicks) */
iE

Of course, this is only one example of an acceleration algorithm. Many others exist, and it is the job
of the programmer to find the right algorithm for his application.

/.2. Page script

The page script is executed just before a new page is going to be displayed, immediately before a
page. onEntry callback is called (if one is defined for the page). In fact, all the buttons and panels
on the page are created as specified in the configuration file by the editor. The only thing that has
not been done is to show them on the screen.

7.2.1. Usage

A page script can be used to update the look of a page before it is shown to the user. Widget labels
and images can be updated to show the actual status. Any popup panels and other widgets that should
not be visible initially, can be hidden.

The page script can make use of general purpose functions defined in a library, or in the activity script.

If you need some variables that need to be shared between different widgets on the page, they can
be declared and initialized here.

/.2.2. Page label

In the editor you can define a label for every page. Without ProntoScript, these can not be used
on the device.

The following activity script animates the activity label and the page label:

37

ProntoScript Developer's Guide

Example 7.3. Label animation
var orglLabel = label; // Save original activity |abel

functi on ani mat eLabel ()

if (label === "") {
| abel = orglLabel; // Restore original activity nane
} else {
| abel = label.substring(1); // Renpve the first character
schedul eAfter (330, ani matelLabel); // Aninmate 3x per second
}
}
function start Ani mat eLabel (pagelLabel)
| abel = orgLabel + " — " + pagelLabel; // Conmbine the activity and
/'l page | abel
schedul eAfter (2000, ani matelLabel); // Start aninating after 2 seconds
}
Tip
T/

It is a good practice to use comments to make complex scripts more readable as shown
in the example above.

Now start the animation in the page script:

start Ani mat eLabel (| abel) ;

/.2.3. Home page

The home page is the first page of the Home activity. Since the home page is the first to be displayed
after power up of the control panel, you can put a custom splash screen here. Create a panel with
a nice background and a welcome message and tag it "SPLASH". Then, put the next code in the
home page script:

if (Systemgetd obal ("Hone. Started") === null) {
schedul eAfter (3000, function() { widget("SPLASH').visible = false; });
System set d obal ("Hone. Started", "true");

} else {
wi dget (" SPLASH') . visible = fal se;

}

7.2.4. Jump to another activity

When an action list containing a page jump to a page of another activity is executed, the lifetime
of the current activity stops and the script is aborted. The execution of the action list however is
not affected.

7.2.5. Multiple page jumps within an activity

When an action list containing multiple page jumps is executed, each page script is executed when
the jump is done, and the next action in the action list is only executed after the page script has
finished. This has the consequence that this page script can not execute an action list (using
wi dget . execut eActi ons()) An exception will be thrown. When the calling script requires
the action list to be executed, it is advised to use W dget . schedul eActi ons() instead.

38

ProntoScript Developer's Guide

Chapter 8. Extenders

Now that you know how to create some scripts and manipulate the widgets on the screen, it is
time to interface with your equipment. This chapter covers the devices that you hooked up onto
your serial extender(s); the next chapter will cover communicating to the rest of the world over
the wireless network.

8.1. CFextender|]

How to use an extender in ProntoScript? The CF class has a member called ext ender [] which is
an array containing valid entries for all extenders that are configured in the editor.

Suppose you want to use an extender that you configured as extender 0. Then the following line gets
a reference to the Extender object that corresponds to it:

var e = CF.extender[O0];

If extender O is not defined, e will now have the value undef i ned. Protecting against this can be
done as follows:

if (le) {
Di agnostics. | og("Extender 0 is not defined");
} else {
/1 put the rest of your code here
}

The Extender object that you have now, gives you access to the ports of the extender: the serial ports,
the power sense ports and the relay ports. It does this through its arrays: serial [], i nput[]
andrel ay[].

Since a serial extender has four serial ports, four inputs and four relays, the arrays each contain four
references to objects of type Seri al , | nput and Rel ay.

Note

Although the ports are numbered 1 to 4 on the extender and in the editor, all array
elements start at index 0 in ProntoScript! This is in line with the JavaScript convention
regarding array indices.

8.2. Serial ports
Suppose you hooked up a serial A/V receiver onto the first serial port of the extender. First, a
reference to that serial port must be obtained:

var s = e.serial[0];

If the extender is defined as a basic extender, it will have no serial ports and the entry will be un-
def i ned, so that can be checked against:

if (!'s) {
Di agnostics.l og("Extender 0 is not a serial extender");
} else {
/'l put the rest of your code here
}

8.2.1. Configuring the serial port

39

ProntoScript Developer's Guide

Once the Seri al object for the serial port is retrieved, it can be configured with the serial com-
munication settings that the receiver is expecting.

For example:

.bitrate = 9600;
.databits = 8;
.parity = 0; // None
.stophbits = 1;

n n n n

These are in fact the default communication settings of the serial ports. But it is a good practice to
explicitly configure them.

8.2.2. Sending and receiving
Now that the serial port is configured, a command can be sent to it to turn the A/V receiver on:
s.send("PWONT");
This sends the string "PWON" followed by a carriage return over the serial line.

With the recei ve function, a command can be sent and a response received. This one line of
code requests the current master volume:

var volune = s.match("MW?\r", "\r", 250);

This first sends the string "MV?\ r " to the A/V receiver and then captures the incoming data until a
carriage return is received. The last parameter makes sure the operation does not wait longer than
250 milliseconds for the response to be received.

Combining all above code snippets together yields a button script that requests the volume and puts
it on its label:

Example 8.1. Synchronous serial communication

var e,s;
e = CF. extender[0];
if (le) {
Di agnostics. | og("Extender 0 is not defined");
} else {
s = e.serial[0];
if (!s) {
Di agnostics.l og("Extender 0 is not a serial extender");
} else {

s.bitrate = 9600;

s.databits = 8;

s.parity = 0; // None

s.stopbits = 1;

| abel = s.match("MW?\r","\r", 250);

}
8.2.3. Asynchronous operation

The above script uses 'synchronous' serial communication. This means that the match function stops
the script, effectively blocking the control panel until the response is received. As explained before,
blocking the control panel is generally not a good idea. A better way to do this is to define a callback
function for receiving the data:

s.onData = function(v) { label =v; };

40

ProntoScript Developer's Guide

Now the line:
s.match("MW?\r", "\r", 250);

will not block the control panel anymore. The script will finish, and when the response with the
volume is received from the A/V receiver, the anonymous inline function is called, which will set the
label.

You can also define callback functions for handling the timeout and other errors. The following lines
make sure a diagnostics message is logged when a timeout or another error occurs:

s.onTi meout = function(v) {
Di agnostics.log("A/'V receiver timeout");
}

s.onError = function(e) {
Di agnostics.log("A/'V receiver error " + e);
}

8.3. Inputs

The power sense inputs of the extender are equally easy to operate. To get the first power sense
input of extender 0, just write:

var i = CF.extender[O].input[0];

Again, i will be undef i ned if the extender is defined as a basic extender.

8.3.1. Getting the state

Now, imagine you would want a panel on the page that should indicate the power state of a device.
This can be done by tagging it "PONER_STATE" and adding a small page script to inquire the state
of the input:

var i, w

i = CF.extender[O0].input[O0];

w = wi dget (" POAER_STATE") ;

w. | abel =i.get() ? "high" : "low';

This requests the state of the input from the extender and then updates the panel with the text
"high" or "lOW" accordingly. When you configure the page script to be repeated, you will see the
panel being updated when the input changes.

8.4. Relays

An extender relay port can be controlled as follows. First the corresponding Relay object is obtained:
var r = CF.extender[O0].relay[O0];
Then the current state can be retrieved with get () and changed with set () ortoggl e():

if (r.get() === false) {
r.set(true);
}

8.5. Limitations

When using the extenders you should be aware of the fact that one extender can do only one thing at
a time. So for example, while you are doing a receive operation on one serial port, you cannot ask it

41

ProntoScript Developer's Guide

to send something on another port or toggle a relay etc. Also if you are implementing an installation
with multiple control panels, you will get an error if you try to access a port of an extender that is
currently processing a request from another control panel.

So try to write scripts that do not block the extenders for a long time. Suppose that your A/V receiver
sends serial data when its volume is changed and that you want to reference these 'unsolicited events'
to update the screen of the control panel accordingly. You could use the following script:

function Pol | AVRecei ver (d)

{
.../* parse d for data to be displayed */
s.match("", "\r", 1000); // Collect data for one second

}
s.onData = Pol | AVRecei ver;

Pol | AVRecei ver(""); // Start polling

This will constantly read from the serial port and parse the received data to update the screen. But
it will also keep the extender locked continuously. Instead, you could also write:

function Pol | AVRecei ver ()

{
d = s.match("", "\r", 0); // Synchronous read with tinmeout=0
.../* parse d for data to be displayed */
schedul eAfter (1000, Pol | AVReceiver); // Schedul e next poll

ik

Pol | AVRecei ver (); // Start polling

Or simply put this in the page script with a repeat interval of one second:

d = s.match("", "\r", 0); // Synchronous read with tineout=0
.../* parse d for data to be displayed */

This is a better solution since now the extender will only be locked for a very short time every second.

42

ProntoScript Developer's Guide

Chapter 9. Libraries

A ProntoScript Library is a self-contained file which allows a script to be easily reused in multiple
activities, pages and XCFs.

9.1. Using a library

When you want to use an existing library in your configuration, it must first be included in the
configuration. A library can be attached to an individual activity, or it can be attached system-wide.

9.1.1. Attaching a library

To attach a library to an activity, drag & drop the library from the Building Blocks on an activity in the
Project Overview or on the PS Libraries tab of the Activity Properties.

This will associate the library with the activity and will cause it to be read whenever the project is
being saved, simulated or downloaded to the control panel.

6 Note
By default the ProntoScript Libraries tab is not shown in the Building Blocks.

If you want to use the ProntoScript Libraries, select the Options... menu entry of the
Tools menu in the main menu bar, to show the Options dialog. In that dialog, select the
General Settings tab, and select Advanced view in the View Mode Selection box.

9.1.2. Attaching a library globally

If a library is required in multiple activities, ProntoEdit Professional allows adding this library globally,
in the PS Libraries tab of the System Properties pane. This will cause the library to be attached to
each activity in the project. (Globally attached libraries are shown greyed-out in the PS Libraries tab
of the Activity Properties of each activity.)

9.1.3. Loading a library

When the library is associated, it is not yet available from within ProntoScript. Checking the check-
mark next to the library in the PS Libraries tab will cause the library to be automatically loaded
whenever the activity is entered.

The order of the inclusion can be controlled by reordering the libraries in the PS Libraries tab, using
the arrow tool buttons in that tab.

For globally attached libraries, loading of a library can be controlled with a checkmark in the PS
Libraries tab of the System Properties pane. Doing so will cause the library to be loaded every time
any activity is entered. Libraries attached to a specific activity will be loaded after those configured
to be included system-wide.

Tip

T

Loading a library takes some time, because the library is a script which must be parsed
and executed. So if a library is not needed in every activity, activity switches will be
faster if the library is only loaded for those activities that need them. To do so, attach
the library only to those activities that need them, instead of attaching them globally.

43

ProntoScript Developer's Guide

9.1.4. Manually loading a library

Loading of a library can also be performed manually from another script, using the ProntoScript
System.include method:

System i ncl ude(" com exanpl e. MyLi brary.js");

Tip

/(

—-—
P—
-

The filename of a library can be copied to the clipboard by using the Ctrl+C shortcut
while a library in the PS Libraries tab of the Activity Properties is selected.

This technique can be used to dynamically decide which libraries to load, for example to speed up
entering an activity, by only loading a library when it is needed, instead of doing so automatically.

9.2. Installing a library

Libraries can be added manually, by storing them in the Li br ar i es folder of your installation.

Note
Depending on the Windows version, libraries are stored at the following location:

Windows XP C:\ Docunents and Settings\Al |l Users\Appli -
cation Data\Philips\ProntoEdit Profession-
al 2\Libraries

Windows Vista, Win- C:. \ Progr anDat a\ Phi | i ps\ Pront oEdit Prof es-
dows 7 sional 2\Libraries

9.2.1. Version Control

When an XCF is opened in the editor, the contained libraries are validated. After the libraries are
validated, the following conditions are checked:

library is invalid library will be validated
library is not already installed library is copied to disk
library is already installed local library has higher version library in XCF is backed
up, local version will be
used
local library has lower version local library is backed

up and will be replaced
by library in XCF

9.3. Creating a library

There are 2 types of libraries: protected and unprotected libraries. Protected libraries are binary files
which have a . pj S extension, while unprotected libraries are plain text files with a . | S extension.

This section covers the creation of unprotected libraries.

Unprotected libraries are JavaScript files (in UTF-8 encoding), which can be created using any text
editor.

44

ProntoScript Developer's Guide

For an unprotected library to be recognized by ProntoEdit Professional, it must contain a special
comment block (delimited with / *! and */) within the first 100 lines of the file. This header should
contain three mandatory fields. The order of these fields is free, but they must appear on different
lines. Other lines can be freely added in the header, they will not be parsed.

@ut hor minimum 1, maximum 80 of the following characters: [a-zA-Z0-9 ,.;-_:/@)]

@itle minimum 1, maximum 80 of the following characters: [a-zA-Z0-9 ,.;-_:/@)]

@ersion format<nunber >. <nunber >, where nunber is a number between 0 and 999. This
can be followed by whitespace, after which the rest of the line is ignored.

Example 9.1. Library header

[*]
@ut hor Koninklijke Philips Electronics
@itle comphilips.CurrencyConverter

@ersion 1.0
*/

It is recommended to use the Java Package Naming Convention for library filenames and titles. This
convention states that the file should have a hierarchical name with the following parts:

* the top level domain name of the organization
* the organization's domain
* any subdomains listed in reverse order

* the name of the library

9.4. Protecting libraries

A protected library is a library which is cryptographically protected to prevent easy retrieval of the
source code, and to protect against tampering. When a protected library is modified even slightly,
the control panel will be refuse to use it.

To protect a library, right click on the library in the Building Blocks and select Protect Library from
the popup menu.

Note
A USB connection with a control panel is required to be able to protect a library.

Note

Protected scripts can only be executed on the control panel, and are not available in
the simulator.

9.5. Library example: Currency Converter

This section describes a library implementing a basic currency convertor, in which almost all of the
functionality is contained within a library. Activity, page and button scripts are only used to hook up
the GUI with the library implementation.

45

ProntoScript Developer's Guide

ﬁPlontoSimulatol EI = @

File Wiew Panel Tools Help

Wed Nov 18 11:42am
CurrencyConverter/l 5=

[*]
@itle comphilips.CurrencyConverter
@ersion 2.0
@ut hor Koni nklijke Philips Electronics
*/

/1 Setup com philips. CurrencyConverter namespace
var com
if (tcom {
com = {};
} else if (typeof com!== "object") {
throw new Error("com al ready exists and is not an object");

if (!'comphilips) {
com philips = {};
} else if (typeof comphilips !'== "object") {
throw new Error("com philips already exists and is not an object");
}
if (comphilips.CurrencyConverter) ({
throw new Error("com philips.CurrencyConverter already exists");

}

com phi l'i ps. CurrencyConverter = {};

/1 Define and i nvoke anonynous function to fill
/1 private namespace.
(function () {

var exchangeRate = 1.48749,
got Dot = fal se,
di spl ayW dget ,
ns;

function updat eDi spl ay(text)
/1l Once an error happened, no display updates are done anynore

/1 until cleared
if (displayWdget.label !'=="ERROR) {

46

ProntoScript Developer's Guide

if ((displayWdget.label === "0") || (text === "ERROR)) {
di spl ayW dget .| abel ="'";
}
di spl ayW dget . | abel += text;
}
}

function cl earEverything()

{
di spl ayW dget .| abel = "'0";
got Dot = fal se;

}

function processDigit(digitText)
{

}

updat eDi spl ay(di git Text);

function processDot ()

{
if (gotDot === false) {
updat eDi splay('.");
got Dot = true;
}
}

function reportError()

{
}

updat eDi spl ay(' ERROR) ;

function convert (toCurrency)

{

var convert edVal ue;

convertedVal ue = parseFl oat (di spl ayW dget .| abel, 10);
switch (toCurrency) {
case ' EUR :
convertedVal ue /= exchangeRat e;
br eak;
case 'USD :
convertedVal ue *= exchangeRat e;
br eak;
defaul t:
br eak;
}
convertedVal ue = convertedVal ue.t oFi xed(2);
di spl ayW dget . | abel = convertedVal ue;

}

function set D spl ayW dget (w dget)
{

di spl ayW dget = wi dget;

cl ear Everyt hi ng();
}

function process(aTag)

if (displayWdget) {
switch (aTag) {
case 'B 0':
processDigit(0);
br eak;

47

ProntoScript Developer's Guide

case 'B 1':
processDigit(1);
br eak;

case 'B 2':
processDigit(2);
br eak;

case 'B 3':
processDigit(3);
br eak;

case 'B 4':
processDigit(4);
br eak;

case 'B 5':
processDigit(5);
br eak;

case 'B 6':
processDigit(6);
br eak;

case 'B 7':
processDigit(7);
br eak;

case 'B 8':
processDigit(8);
br eak;

case 'B 9':
processDigit(9);
br eak;

case 'B_DOT" :
processDot () ;
br eak;

case 'B CE':
cl ear Everyt hi ng();
br eak;

case 'B_EURO :
convert (' EUR);
br eak;

case 'B_DOLLAR :
convert (' USD);
br eak;

defaul t:
reportError();
br eak;

}

}
}

/1 Export public synbols, other symbols will remain
/1 private.
ns = com philips. CurrencyConverter;
Ns. process = process;
ns. set Di spl ayW dget = set D spl ayW dget ;
1O

function buttonPressHandl er ()

{

com phi li ps. CurrencyConverter.process(this.tag);

}

CF. page("PACE1").onEntry = function () {
var w = GU .w dget (" DI SPLAY");
com phi l'i ps. CurrencyConverter.set Di spl ayW dget (w) ;

[
"B_CE", "B_EURO', "B DOLLAR',

48

ProntoScript Developer's Guide

"B 9", "B 8", "B_7",

"B 6", "B 5", "B 4",

"B 3", "B 2", "B 1",

"B 0", "B_DOT"
].forEach(function (aTag) {

var w = QU .w dget (aTag);

w. onPress = buttonPressHandl er;
B¢

I

The above library must be added to an activity, in the PS Library tab of the Activity Properties pane.
Check the checkbox next to the library, to have this library automatically loaded upon entering the
activity.

49

ProntoScript Developer's Guide

50

Chapter 10. Network communication

ProntoScript Developer's Guide

Another powerful feature of the Pronto is its ability to perform network communication via WiFi or
Ethernet. The ProntoScript programmer can make use of both TCP (Transfer Control Protocol) and
UDP (User Datagram Protocol) transport protocols to interface with other IP networked devices.

10.1. TCP connections

10.1.1.

The TCP transport protocol provides a reliable connection between two IP nodes. Data sent over a
TCP connection will be retransmitted if packets are lost in communication, and the data is guaranteed
to be delivered at the other endpoint in the order that it was transmitted.

In ProntoScript, a TCP connection can be established using the TCPSocket class.

The following line creates a variable of type TCPSocket :

var socket = new TCPSocket (true);

Similarly to serial communication, network sockets can be used in a synchronous or asynchronous
way. The parameter t r ue above indicates synchronous, which means that the script will block during
every socket operation, while in the asynchronous case callback functions are called at the completion
of each operation.

Synchronous operation

The first thing to do when setting up a network connection is to specify the destination:

socket . connect (' googl e. coni, 80, 3000);
This call tries to connect to the website "googl e. conf, port 80.

Instead of the name, also the ip address can be given, for example: " 192. 168. 42. 110" . When
the destination is found within three seconds, the script continues, otherwise an exception will be
thrown. See section Section 2.5, “Exceptions” on handling exceptions, but let's first describe the case
in which everything goes well.

Once the connection is established, it can be read from and written to. The following lines ask for
the root directory using the HTTP protocol. Then it stores the first 100 characters that are received
during maximally 3 seconds.

socket.wite("GET / HTTP/1.0\r\n\r\n");
result = socket.read(100, 3000);

When finished, the connection should be closed:
socket . cl ose();

The above code snippets can be combined in a single button script to show the result on the button
label when it is pressed:

Example 10.1. Synchronous HTTP client

var socket = new TCPSocket (true);
socket. connect (' googl e. coni, 80, 3000);
socket.wite("GET / HTTP/1.0\r\n\r\n");
| abel = socket.read(100, 3000);

socket . cl ose();

51

ProntoScript Developer's Guide

10.1.2.

Tip

(¢

It is recommended to close the connection after use.

It is possible to leave the connection open but you should always check for the status of
the connection, by sending something over the TCP socket and reading back a response
on that sent data within a certain timespan (assuming that the protocol used by the
server supports something like this).

Even if one can write to a TCP socket, this does not always mean that the data will be
immediately received by the other end. Only reception of new inbound data is a valid
indication that the connection is still alive.

For example, the connection could have been closed by the remote end while the
control panel was asleep (and thus unaware of this). At wake up, the control panel
would still assume that the connection is open and a write operation to the socket will
succeed. Eventually, this write will trigger an I/O error or an onCl 0se event.

Of course you should make sure you properly configured the network settings for the control panel
in the editor. Then, you can download this configuration to your control panel and test it.

When you press the button, you will notice that the script execution blocks the control panel while
setting up the connection and getting the data. The next section shows how to avoid this.

2 Important
It is always preferred to use asynchronous communication because this will not block
the user interface.

Synchronous communication will block the user interface until the timeout expired or
until a match is received. Also, with asynchronous communication, it is less likely that
the communication buffers get exhausted.

Asynchronous operation.

When specifying f al se when constructing the TCPSocket, an asynchronous socket is created:

var socket = new TCPSocket (fal se);

The next line looks identical to the synchronous case:
socket . connect (' googl e. com, 80, 3000);

But now the connect () will return immediately and the script continues, although the connection
is not yet established. Therefore writing to the socket is not possible yet. So, the remainder of the
script should be executed when the connection is ready: in the onConnect callback function:

socket . onConnect = function()

{
}s

So when the connection is established, the onConnect function is called which writes the request
to the socket. Note that within this socket function, we can call the write() function without
prefixing it with socket , because the socket scope is active. Refer to Section 6.2, “Scope” on scoping
rules.

wite("GET / HITP/1.0\r\n\r\n");

Then we want to read the response. But we cannot start reading yet, because no data is available yet
and we do not want to block the control panel to wait for data. This is triggered by the onDat a
callback function:

52

ProntoScript Developer's Guide

result ="";
socket . onData = function()

{
b

When data is available, the onDat a callback is triggered. This function can be triggered repeatedly,
as long as data is coming in. That's why the above example accumulates everything in the r esul t
variable. Note that no count and no timeout are specified for the read function. It will return
immediately with all available data.

Tip

result += read();

Mt

When using asynchronous TCPSocket operation, it's a good idea to always set an
onDat a callback, and perform a read on the TCPSocket instance, even if the
received data is not being used.

This will avoid communication buffer overflows.
According to the HTTP standard, the destination will close the socket when the document is com-

pletely transferred. This will trigger the onCl ose callback function that can show the accumulated
result in the button label:

socket . onC ose = function()

| abel = result;

%

The combined script looks as follows:

Example 10.2. Basic asynchronous HTTP client

var socket, result;
socket = new TCPSocket (fal se);

result ="";

socket . onConnect = function()

{ wite("GET / HTTP/1.0\r\n\r\n");
];'ocket .onData = function()

i result += read();

socket. onC ose = function()

| abel = result;
i
socket . connect (' googl e. comi, 80, 3000);

Note

The HTTP client shown here is only a very basic implementation. A more extensive
HTTP client implementation is available in the com phi |l i ps. H tpLibrary.js
library, documented in Appendix B, HttpLibrary API.

It is a little more extensive than the synchronous case, but it does not block the control panel.

One more thing that should be added is some error handling. In case of an error during one of the
socket operations, the onl OErr or callback function is called, if defined:

socket.onl Cerror = function(e)

53

ProntoScript Developer's Guide

10.1.3.

{
h
Reusing TCPSocket instances

| abel = "Socket error: " + e;

Reusing a TCPSocket is not supported. Always create a new socket after a close:

function rel nitSocket ()

{
socket = new TCPSocket ();
socket . onConnect = ny_onConnect;
socket.onData = nmy_onbDat a;
socket.ond ose = ny_ond ose;
socket.onl CError = ny_onl Cerror;
socket . connect (i pAddress, port);

}

if (socket.connected === true) {
socket . write(...);

} else {
rel ni t Socket () ;

}

10.2. UDP communication

10.2.1.

10.2.2.

The UDP transport protocol is a more low-level transport protocol than TCP; it provides control
over which packets are actually sent, but there is no guarantee that those packets will arrive at all,
or in the order that they were sent. If such guarantees are needed, they must be implemented on
top of the UDP transport protocol.

ProntoScript provides a UDPSocket class, instances of which can be used to send and receive
UDP datagrams. For UDP communication, only asynchronous operation is available (no synchronous
operation as is available -but not recommended- for TCP sockets).

Sending UDP packets

A UDP datagram can be sent using the send method of a UDPSocket instance.

Example 10.3. Sending data to a UDP server

var s = new UDPSocket ();
s.send("ABC', "192.168.1.100", 4100);

Receiving UDP packets

In order to receive UDP packets from the network, a port number can be specified in the UDP-
Socket constructor. This will cause the UDP socket to be bound to that port number, enabling it
to receive inbound UDP packets with that destination port number.

Binding a socket will also cause all packets sent through the socket to use that source UDP port
number (if a port number is not specified, the origin port number may change for every UDP packet
sent via the socket).

Note

In order not to cause conflicts with system services running on the control panel, UDP-
Socket can only be bound to UDP ports 1024 to 65535.

54

ProntoScript Developer's Guide

10.2.3.

10.2.3.1.

10.2.3.2.

If a UDP socket is bound to a port, inbound UDP packets on that port will cause an onDat a
callback to be invoked:

Example 10.4. Receiving UDP datagrams

var s = new UDPSocket (4100);

s.onData = function (abData, aHost, aPort) {
System print("Received " + aData.length + " bytes");
Systemprint("Client |IP address: " + aHost);
Systemprint("Client UDP port: " + aPort);

}s
Multicast

Multicast is an IP facility to allow many-to-many communication (as opposed to unicast, which is about
one-to-one communication). Multiple IP nodes can belong to the same multicast group, which is iden-
tified by an address from the IP address range reserved for multicast (224.0.0.0 - 239.255.255.255).

Sending multicast datagrams

Sending UDP datagrams to a multicast group can be done simply by using the appropriate multicast
address as the destination address parameter of a UDPSocket 's send method:

Example 10.5. Sending a UDP datagram to a multicast group

var s = new UDPSocket ();
s.send("ABC', "224.1.2.3", 2200);

The above example will transmit the UDP datagram on the local link (to the WiFi access point, an eth-
ernet switch/hub); any IP node which is listening for UDP packets on port 2200 on the 224. 1. 2. 3
multicast address may receive them.

If there are any multicast-enabled routers on the local subnet, a multicast datagram may also be
replicated towards other subnets. The depth of such replication is controlled by the Multicast TTL
(Time-To-Live) of a UDP socket. By default this value is 1, meaning that multicast packets are only
to be propagated within the local subnet. However, this can be changed using the set Mcast TTL
method of a UDPSocket object instance:

Example 10.6. Specifying Multicast TTL

var s = new UDPSocket ();
s.set Mcast TTL(31); // Propagate up to 31 hops
s.send("ABC', "224.1.2.3", 2200);

Receiving multicast traffic

Inbound UDP datagrams originating from a multicast group can be received using an onDat a call-
back, but in order for the control panel to receive multicast traffic for a particular multicast group,
the group must be joined first.

A multicast group can be joined using the ntast Joi n method.

Example 10.7. Receiving Multicast UDP datagrams

var s = new UDPSocket (4100);

s.onData = function (aData, aHost, aPort) {
System print (" Received " + aData.length + " bytes");
Systemprint("Client |IP address: " + aHost);
Systemprint("Client UDP port: " + aPort);

h

s.ncastJoin("224.1.2.3");

55

ProntoScript Developer's Guide

56

ProntoScript Developer's Guide

Chapter 11. Getting external images

In the previous chapter you have seen how you can set up a connection to a web server. This chapter
will illustrate how to use this to get images from a web server to a Pronto.

By being able to dynamically create images, it is not necessary to include all images in the configuration
file. Just set up a TCP connection to a web server and get your favorite images. And don't worry
about the dimensions of the images! With the stret chl nage property, all images in a widget
are stretched to fit the widget size.

Before showing the complete code it could be interesting to explain a few lines. The most important
feature is of course the dynamic creation of images. You can make your own images by calling the
| mage class constructor.

Example 11.1. Creating an image from image data
var nylmage, imageDat a;

/1 PNG i nage data
i mmgeData = "" +

"\ x89\ x50\ x4e\ x47\ x0d\ x0a\ x1a\ x0a\ x00\ x00\ xO0\ xOd\ x49\ x48\ x44\ x52"
"\ x00\ x00\ x00\ x32\ x00\ x00\ x00\ x10\ x04\ x03\ x00\ x00\ x00\ xa6\ x75\ x31"
"\ xbf\ x00\ x00\ x00\ xOf \ x50\ x4c\ x54\ x45\ x51\ x00\ x00\ x17\ x14\ x14\ x17"
"\ x15\ x14\ x18\ x16\ x15\ x16\ x14\ x13\ x8a\ xb4\ xee\ xe5\ x00\ x00\ xO0\ x01"
"\ x74\ x52\ x4e\ x53\ x00\ x40\ xe6\ xd8\ x66\ x00\ xO0\ x00\ x01\ x62\ x4b\ x47"
"\ x44\ x00\ x88\ x05\ x1d\ x48\ x00\ xO00\ x00\ x09\ x70\ x48\ x59\ x73\ x00\ x00"
"\ x0b\ x13\ x00\ x00\ x0Ob\ x13\ x01\ x00\ x9a\ x9c\ x18\ x00\ x00\ xO0\ xO7\ x74"
"\ x49\ x4d\ x45\ x07\ xd9\ x0c\ x02\ x0a\ x25\ x2c\ x41\ xa0\ xf b\ x1f \ x00\ x00"
"\ X00\ x7c\ x49\ x44\ x41\ x54\ x18\ xd3\ x75\ x90\ xc1\ x09\ xc3\ x40\ xOc\ x04"
"\ x07\ xb3\ x15\ xa4\ x02\ x3f \ xdc\ x41\ x1a\ x58\ x8e\ xe9\ xbf \ xa6\ x3c\ xee"
"\ xec\ x80\ x13\ x0b\ x04\ x12\ xb3\ x0b\ x2b\ xc1\ x59\ xd1\ xf 2\ xb7\ x02\ x3e"
"\ x10\ x65\ x9a\ xf a\ xe8\ x39\ xad\ x6a\ x33\ x3b\ x54\ x1b\ xbb\ xbd\ xdf \ x3b"
"\ xa8\ x46\ x4f \ x85\ x6a\ x8f \ xd7\ x31\ x40\ x30\ x05\ xb1\ x91\ x18\ x19\ xf 0"
"\ x25\ x11\ x49\ x49\ xd3\ x6d\ xcO\ x60\ xca\ x3a\ xb5\ x27\ x29\ xdb\ x22\ xce"
"\ x24\ x17\ x99\ x93\ x5a\ xd7\ x11\ x61\ x11\ xdd\ xc9\ x4a\ x9f \ xe6\ x76\ xel"
"\ xda\ x73\ x49\ xee\ x04\ x7f \ xdO\ xb5\ x7a\ xf 7\ x3c\ x7c\ x1e\ x3e\ x5b\ x8b"
"\ x1d\ xdd\ x92\ x4a\ xb2\ x88\ x00\ xO00\ x00\ x00\ x49\ x45\ x4e\ x44\ xae\ x42"
"\ x60\ x82";

o T T T S T ST S S S S S R

nyl mage = new | mage(i mageDat a) ;

The i mageDat a variable is a St r i ng containing the raw image data, which may be in a PNG, |PG
or BMP format. Typically such image data is obtained by retrieving it from a web server, but it can
even be created manually in the Pronto.

57

ProntoScript Developer's Guide

Example 11.2. Manual creation of a BMP image

/1l --- BEG N Dynam cBitmap cl ass
function Dynam cBitmap()
{

var y, row
/1 Enpty 64x64 bitnmap
this.bitmapData = new Array(64);
row = "\ x00\ x00\ x00\ xO0\ xOO\ x00\ x00\ x00";
for (y =0; y <64 y +=1) {
this.bitmapDataly] = row,
}
}
Dynami cBi t map. prototype.toString = function () {
var bmpHeader, di bHeader, colorPalette, result, y;
brmpHeader = " BM>\ x02\ x00\ x00\ x00\ x00\ x00\ x00>\ x00\ x00\ x00" ;
di bHeader = " (\ x00\ x00\ x00@ x00\ x00\ x00@ x00" +
"\ x00\ x00\ x01\ x00\ x01\ x00\ x00\ x00" +
"\ x00\ x00\ x00\ x02\ x00\ x00\ x13\ xOb" +
"\ x00\ x00\ x13\ xOb\ x00\ x00\ x02\ x00" +
"\ x00\ x00\ x02\ x00\ x00\ x00";
/1 2 colors: Black and Wite
col orPal ette = "\x00\ x00\ x00\ x00" + "\ xff\xff\xff\x00";
result = bnpHeader + di bHeader + colorPalette;
for (y =0, y <64, y +=1) {
result += this.bitmpDataly];
}
return result;
iE
Dynami cBi t map. prot ot ype. tol mage = function () {
return new I mage(this.toString());
iE
Dynami cBi t map. prototype. plot = function (x, y) {
var row, byteCOffset, byteBit, before, after, targetByte;
row = this.bitmpDataly];
byteOf fset = x >> 3;
byteBit = 7 - (x & 0x07);
bef ore = row. substring(0, byteCfset);
after = row. substring(byteOffset + 1);
targetByte = row. char CodeAt (byteOf fset);
targetByte |= 1 << byteBit;
row = before + String.fronmCharCode(targetByte) + after;
this.bitnapDataly] = row,
iE
/1 --- END: Dynam cBitmap cl ass
/1 Render a Lissajous curve
function draw)
{
var out put Panel ,
myDynam cBi t nap,
r, Xy
out put Panel = GUI . wi dget (" OQUTPUTPANEL") ;
myDynam cBi t map = new Dynani cBi t map();
for (r =0; r < (4 * Math.Pl); r += 0.02) {
X =32 + (Math.sin(r * 2) * 30);
y =32 + (Math.cos(r * 1.5) * 30);
myDynam cBi t nap. pl ot (Mat h. round(x), Math.round(y));
}

out put Panel . set | nage(myDynam cBi t map. t ol mage());

58

ProntoScript Developer's Guide

Example 11.3. Displaying an image from a HTTP server

var socket, receivedDat a;
socket = new TCPSocket ();
recei vedData = "";

socket . onConnect = function() {
wite("CET /images/ingl.jpg HITP/1.0\r\n\r\n");
s

socket.onData = function() {
recei vedData += read();

s
socket.onl CError = function (e) {

wi dget ("output”).label = "ICError " + eg;
s

socket.onC ose = function () {
var imageStart! ndex,
bi t mapDat a,
myl mage;

/'l remove the HTTP header fromthe received data
i mgeStartlndex = receivedData.indexOr("\r\n\r\n");
bi t mapDat a = recei vedDat a. subst ri ng(i mageSt art | ndex+4);

/1 make and di splay the image

nyl mage = new | mage(bi t mapDat a) ;

wi dget ("out put"). set | mage(nyl mage) ;
s

socket. connect (" MyServer. coni', 80, 3000) ;

Tip

"

When using the com phi | i ps. Htt pLi br ary library, the above example can be
replaced with:

System i ncl ude("com philips. HtpLibrary.js");

var httpLib = comphilips. HtpLibrary;

htt pLi b. showHTTPI mage(' http:// M/Server.com i mages/ingl.jpg',
"output');

(Also see Section 9.1, “Using a library”)

As can be seen, most of the code is needed to set up the connection to the server. When all the
data is received, the HTTP header information is stripped, the image data is extracted, and rendered
on a widget.

59

ProntoScript Developer's Guide

60

ProntoScript Developer's Guide

Chapter 12. ProntoScript Modules

A ProntoScript Module is a building block that is an activity containing a number of pages and scripts
that offer the interface and intelligence for controlling a specific device.

12.1. Creating a ProntoScript Module

12.1.1.

12.1.2.

Design an activity

When you want to create a ProntoScript Module, create an activity in a new project. Then you should
add the graphical and logical elements that are needed to control a certain device.

You should make sure that the activity is self-contained. This means that the scripts should not refer
to widgets in other activities or on the system page.

Using hidden pages for easy configuration

The module probably needs to be configured by the custom installer. For example which extender
should be used to control the device, what ports are connected, buffer sizes, error levels, etc. It is
preferred that the custom installer doesn't need to dive into the scripts. Therefore it is advised to
add some hidden pages for configuration purposes.

The first hidden page should be called “I NSTRUCTI ONS” and should contain help information to the
custom installer. Next should be a page “PARAMETERS” with yellow fields (panels) which configure
the Pronto to communicate properly to the device to be controlled.

These pages should be made hidden, so that they are only visible in the editor and not on the Pronto
to the end user.

In an effort to standardize the custom installer experience with ProntoScript Modules, the following
template is proposed. It is strongly encouraged to make use of it.

= £ Module Template 1.1
;_1 Activity Properties
Imatructions for Module maker
] Page1
[Page 2
INSTRUCTIONS
PARAMETERS
RESOURCES
TESTING

for
that will integrate and configure your module
please ul i thi

ch

too

Here i hastoset the
1o make the module work in his specific project.

Optional:
d. A"RESOURCES™ page
i :

Here thatare
loaded in the other pages
©.A“TESTING™ page to allow the custom installer to test your

B ProntoEdit 2- [module_ xcf] ===
File Edit View Insert Project Tools Help
ZadB | ‘ |] ‘E.S\mu\ator 4 Download [g My Database
[s o 34 /@ Module Template L1 - Instru... > X /D Module Template 1.1 - PAR... - X
- 5 = a_a = = o
80w x99 SEB|Err-d o mx ” |o BB Y |ErEd - x
cg System
Fieusable Macios
= {8 Home 1 Delete this page when your module is ready This Panel when i
171 vty Propstiss 2 Structure of a Module every parameter has a name and a YELLOW field
Ly wrIop a.a number of visible: that the installer has tofill in. Choose clear and meaningful names:
3 New Page b.an "INSTRUCTIONS" hidden page

for your parameters. Pre-fill with a good default to hint
at the correct formatting

gooddefaultvalue

Position: IS\ZEJ

Note

ProntoScript scoping rules allow modules to be included more than once in a single
project without interfering with each other. An exception (by definition) is the use of

61

ProntoScript Developer's Guide

Global variables. Therefore it is advised to prefix the Global variable names with the
Module name.

The installer will typically change this, making the string unique. You can of course ask
him to do so explicitly in the | NSTRUCTI ONS page.

The parameters can be retrieved from the PARAMETERS page and stored in variables in the activity
script when the module is started. For example:

var server_url, ip_address, port_nr;

server _url = CF.w dget (" PARAMETERL", "PARAMETERS"). | abel ;
i p_address = CF.w dget (" PARAVETER2", " PARAVETERS"). | abel ;
port_nr = CF.w dget (" PARAMETER3", "PARAMETERS'). | abel;

If you need more than four parameters, add another parameter page with the same layout. Make sure
the tags and labels of the parameters on this new page are numbered correctly.

12.2. Publishing a ProntoScript Module

12.2.1.

12.2.2.

12.2.3.

After finishing the activity containing the control for the required device, there are several ways to
distribute it for usage by the custom installer.

Publish as XCF file

You can just save the project file containing the activity, which will result in an XCF file.

Publish as XGF file

You can save it to the “ProntoScript Modules” tab of the Building Blocks via “Save to ProntoScript
Modules” in the activity's context menu, which will result in the creation of an XGF file.

Refer to the “How to Personalize the Gallery” section in the editor's help. ProntoScript Modules are
handled similar to Activities in the gallery.

® Warning
Don't start from the Home activity, since this activity can not be saved as a ProntoScript
Module.

Publish as GEF file

After saving as a ProntoScript Module to the Building Blocks, you can do an export of all the modules
via the “Export ProntoScript Modules” menu item in the editor.

Note

Exporting results in a GEF file containing all ProntoScript Modules. If you want to create
a GEF file containing only your ProntoScript Module, you should remove all others from
the Building Blocks.

Again, refer to the “How to Personalize the Gallery” section in the editor's help on
how to do this.

12.3. Using a ProntoScript Module

62

ProntoScript Developer's Guide

12.3.1.

12.3.2.

12.3.3.

12.3.4.

When you want to use the ProntoScript Module for controlling a specific device, you can include its
activity in your configuration file in several ways, depending on how the module's developer published
his ProntoScript Module. But in any case, a new activity will be added to the activity list.

If it was published as XCF file

Simply merge the project with the ProntoScript module via the “Merge Project” menu item in the
editor.

If it was published as XGF file

Refer to the “How to Personalize the Gallery” section in the editor's help. ProntoScript Modules are
handled similar to Activities in the gallery.

If it was published as GEF file

You can do an import via the “Import ProntoScript Modules” menu item in the editor.

® Warning
Choose the option “Merge” in the menu, since choosing “Replace” will delete all current
ProntoScript Modules.

Configuring the added ProntoScript Module

Read the instructions as provided by the ProntoScript Module's developer in the “I NSTRUCTI ONS”
page and fill in the parameters in the “PARAMETERS” page(s).

63

ProntoScript Developer's Guide

64

ProntoScript Developer's Guide

Chapter 13. Exceptional Scenarios

13.1. Out of memory

When a script runs out of memory, the script engine tries to free up memory with a process called
'sarbage collecting'. This reorganizes the memory space allocated to the script engine in order to
recover chunks of memory that are not used anymore. If this process does not free up enough
memory, script execution will be halted and a diagnostic message will be logged. When the garbage
collection process takes more than one second, also a diagnostic message will be logged.

13.2. Nested scripting

Nested scripting is prohibited. When a script is triggered while the script engine is already executing
another script, it will be queued after the engine is finished. This also means that event functions will
be called after the current script is finished.

13.3. Infinite scripts

It is possible to create a script that takes a long time to execute and effectively blocks the control
panel. In order to enable the user to fix this situation, a key combination can be pressed during the
start-up of the control panel that disables the script engine. The key combination to be used is:
Backlight+Menu+ChannelUp. It must be pressed continuously during the start-up animation and
the please wait screen. A diagnostic message will be logged to indicate the limited functionality avail-
able. The user can then use the normal download procedure to download a corrected configuration
file into the control panel. Another reboot is required to start the script engine again.

13.4. Invalid arguments

When an invalid value is set to a class property, or when a class function is called with invalid or
insufficient parameters, a diagnostic message will be logged and the execution of the erroneous script
will be stopped.

13.5. Script Exceptions

When an abnormal situation is detected during script execution, a script exception is generated. This
can be any of the following:

Exception Description

“Failed” The operation failed, e.g. reading from an exten-
der serial port timed out.

“Not Implemented” A class property or method was used that is
currently not implemented.

“Not Available” A class property or method was used that is not
available.

“Insufficient internal memory available Not enough memory when reading from a TCP

socket or setting a global variable.

“Invalid name” The name passed to Syst em get G obal ()
, set d obal () isnota proper string, or the
library file specified for i ncl ude() cannot
be found in the configuration file.

“Expected a function” The specified callback is not a function.

65

ProntoScript Developer's Guide

Exception

Description

“Expected an integer”

The parameter passed is not an integer.

“Expected a positive integer”

The specified page. repeat|nterval or
wi dget . font Si ze is negative.

“No argument specified”

Not enough arguments are passed to the
method.

“Not enough arguments specified”

Not enough arguments are passed to the
method.

“Argument is not a string”

A specified argument is not a valid string, or
cannot be converted to one.

“Argument is not a function”

A specified argument is not a valid function.

“Argument is not an integer number”

A specified argument is not a valid integer.

“Argument is not a positive integer number”

A specified argument is negative, where only
positive values are allowed.

“Argument is not an image”

wi dget . set | nage() is called with an in-
valid argument.

“Argument is not a boolean”

i nput . mat ch() is called with an invalid ar-
gument.

“Argument is not an IP address”

A specified argument is not a valid IP address,
such as “192. 168. 1. 2”.

“Argument is not a valid color”

A specified argument is not a valid color, such as
Oxf f 0000 (blue) or Oxa5f f (orange).

“Argument out of range”

A specified argument is outside the range of al-
lowed values.

“Color index should be an integer number”

The index parameter of the

wi dget . get BgCol or ()

, Wi dget . get Col or () ,

wi dget . set BgCol or () and

wi dget . set Col or () methods should be an
integer.

“Image index should be an integer number”

The index parameter of the
wi dget . get Il mage() method should be an
integer.

“Index is out of range”

The index parameter of the

wi dget . getl mage() and

wi dget . get |l mage() methods should be
0 or 1 for a button, and always 0 for a panel (if
specified).

“Page not available”

QU . addButton() or

QU . addPanel () was called when the cur-
rent page was not yet available (such as during
execution of an activity script).

“Limit of simultaneous timers reached”

The maximum number of pending
Activity.schedul eAfter () invocations
has been reached.

“Socket error”

A socket operation resulted in an error. For ex-
amplea read() or wite() failed.

“Socket not ready”

write() was performed on a socket which
was not yet connected.

66

ProntoScript Developer's Guide

Exception

Description

“Maximum active socket count reached”

The maximum number of sockets are already in
use.

“Failed to connect”

t cpsocket . connect () failed. Either the
server is not reachable, or is refusing connec-
tions.

“Maximum blocking read length exceeded”

An attempt was made to read more than 65536
bytes from a synchronous socket.

“UDP socket busy”

udpsocket. send() failed, because there
are too many outbound UDP datagrams queued
for transmission.

“Maximum read length exceeded”

You tried to read more than 512 bytes from a
serial port.

“ActionList Error”

Error during Wi dget . execut eActi ons()

“Busy playing actions”

wi dget . execut eActi ons() failed be-
cause an action list is currently being played, or
wi dget . schedul eActi ons() failed be-
cause too many action lists were being queued
for execution.

“Invalid event type”

An invalid event type parame-

ter was passed as an argument to

Syst em addEvent Li st ener () or
System renoveEvent Li stener () .

67

ProntoScript Developer's Guide

68

ProntoScript Developer's Guide

Chapter 14. Debugging your script

There are a number of ways to help you debug your script in case it does not work as expected. Or
it does not work at all because of a typing mistake.

14.1. Debug widget

The first thing you can do is to create a debug widget on the page you want to debug. Create a text
field with the tag _ PS_DEBUG .

In the Appearance tab, position it in the upper left corner and resize it to fill the screen.

Then, in the Label tab, set the text alignment to bottom left.
Note

When using ProntoEdit Professional 1.x, this can be accomplished by creating a panel
with the tag _PS_DEBUG . In the Dimensions tab, position it in the upper left corner
and resize it to full screen.

In the Appearance tab, check the No Fill box to make it transparent so you can still see
and touch the other widgets on the page.

Then, in the Label tab, set the text alignment to bottom left.

=\ NewActiuily)’D New Activity - New Page ¥ x| PanelProperties B x
T I e Avanced
Br| B - - -

FrantoS cript Properties

= T ProntoScript Name: _PS_DEBLG|

Add mm 171 & . e 2

Uze this name to access this lkern fram a ProntaScript

e.g. From Page Timer or Button Script to dpnamically change the
Label of a Panel with ProntoScript Mame ""MyPanell" use:

CF widget("MyPanel1"].label = "Hello wiorld!"

69

ProntoScript Developer's Guide

S New Act'w'lly)/D New Activity - Mew Page] ¥ x | PanelProperties %
- o : Label | Appearance | Advanced
oOEEG B a7
FEE >~
- Date Time 2 &
Activity Name 1/1 % Image Fosition and Size
®o |0 = Y80 12
w640 = H: 400 =
] Add your text here d
Uze Original Size
& Mew Actiui‘ty)/D Mew Activity - Mew Page] ¥ x | Panel Properties e

Bvevd ||| X » | [5E0e i

= E [%
- -|B 1|

Dale Time = @ Usze Text Add your text here

(] [(]

Activity Name 1j1 2=

b 1 @ Usze Symbal @ @

noohCEERNoEn
— R CEEEGE
e || PEERPEREEEEE
EERNOEEREREEE

Now, if an error occurs when compiling or executing your script, an appropriate error message will
be logged into this debug widget. It will indicate the offending script, the line number and a short
description of the error.

Suppose that is a typo in a page script:

var e = CF.extendr[0];

This will give the following output on the screen:

70

ProntoScript Developer's Guide

Tue Mar 17 1:52pm

ProntoScript error: TypeError: CF.extendr has no properties
Offending page script: (untagged)
Offending line #0: "var e = CF.extendr[0]:;"

S T P EA O M——
14.2. System.print()

You can add messages yourself to the debug widget while the script is running. This is done with the
System print () function. An example:

Example 14.1. Syst em print ()

Systemprint("Starting page script");
var w = wi dget ("WRONG _TAG') ;

System print("Wdget: " + w);

w. |l abel = "Hello, world!";

System print ("Page script finished");

This will give the following output:

71

ProntoScript Developer's Guide

Tue Mar 17 1:54pm

Starting page script

Widget: null

ProntoScript error: TypeError: w has no properties
Offending page script: (untagged)

Offending line #3: "w.label = "Hello, world!;"

6 Note
You can pass any string to the System print () function, but the text will be

truncated to 99 characters.

14.3. ProntoScript Console

An alternative to the _PS_DEBUG widget is to use to ProntoScript Console available in the sim-
ulator.

All output which on the control panel would be written to a _PS_DEBUG _ widget (uncaught excep-
tionsand System print () invocations) can bee seen in the ProntoScript Console:

72

ProntoScript Developer's Guide

= PrantoScript Console EI

File Edit Debug

Starting page script

WMidyget: null

FrontofScript error: TypeError: w has no properties
Offending page script: {untagoged)

Offending line #3: "w.label = "Hello, world!":"

14.4. ProntoScript Debugger

For more advanced script debugging, an interactive debugger is also available in the simulator. This
allows tracing script execution, setting breakpoints and tracking variables.

To launch the debugger, select the ProntoScript Debugger menu entry of the Tools menu in the
Pronto Simulator window.

E3 ProntoScript Debugger EI
File Edit View Debug
Xrowmw

Explarer 1 x
=

& FS_MACROS
&, MNew Achidy

Breakpaints

Scope | Label | Line |

g Watches |N; Stack |ug Breakpaints

14.4.1. Toolbar

The debugger's toolbar contains buttons to control script execution within the simulator:

73

ProntoScript Developer's Guide

14.4.2.

14.4.3.

Stop. Stops script execution in the simulator.

Note

Since scripts interact with other GUI elements in
the control panel, all GUI event processing will
also be halted.

I; Continue. Resumes script execution in the simulator.
—

Step Over. Resumes script execution, until a different
{ } source code line is reached, within the current closure. In most
(XX]
cases, this means that called functions will not be traced.

Note

Scripts are first compiled to optimized bytecode
before they are executed. In some cases, this
causes the order in which lines get executed
seem unlogical.

For example, when a variable is declared in a giv-
en line, that bytecode corresponding to that line
might not be executed until that variable is actu-
ally used.

Step In. Resumes script execution, until a different source

p } code line is reached (in any script).

Step Out. Resumes script execution, until the end of the
{ f; current closure. In most cases, this means that execution is
(XX
resumed until the currently executing function is left.

Explorer Window

The explorer window provides a means to navigate through the elements in a configuration which
can be accessed from ProntoScript. These include all activities, pages and libraries, as well as those
widgets which have a script or a ProntoScript tag.

Configuration elements which do not have a script attached are shown with a greyed out name. If
they do have a script attached, double clicking on them will open a window with the corresponding
script source.

Configuration elements which do not have a ProntoScript tag are shown in italics, and are shown
with their label.

Script Windows

Script windows provide a read-only view of a script's source.

If execution is halted by the debugger, the currently active source code line will be shown with a
yellow background.

Breakpoints can be set and cleared by clicking in the left-hand area, before the line number (a red
bullet will be shown for lines on which a breakpoint is currently set).

74

14.4.4.

14.4.5.

14.4.6.

ProntoScript Developer's Guide

Breakpoints Window

The Breakpoints window lists the currently active breakpoints. Double-clicking on a breakpoint in
this list will cause the breakpoint line to be shown in a script window. Right-clicking a breakpoint
entry will show a context menu which can be used to remove the breakpoint.

Watches Window

The Watches window shows a list of expressions which will be evaluated every time the debugger
halts execution of the simulator. Watch expressions can be added or removed by right-clicking in
the Watches window.

Stack View

The Stack View window shows the chain of invoked functions up to the point where script execution
was last halted.

75

ProntoScript Developer's Guide

76

ProntoScript Developer's Guide

Appendix A. ProntoScript Classes Description
(ProntoScript API)

The Maestro control panel scripting language provides a number of object classes that can be accessed
and provide access to the internals of the control panel. The following sections list the available script
object classes in alphabetical order.

A1. Activity class

This class represents a control panel activity as defined in the editor. An activity is in fact a collection
of pages with common hard key definitions.

Instance Properties

| abel This is the text that is shown in the ActivityName status field
when a page of the activity is displayed.

tag The tag is the activity name within the script. It is used to find
a specific activity in the configuration file.

onEntry Define the function to be executed at activity entry.

onExi t Define the function to be executed when leaving the activity.

onRot ary Define the function to be executed after a rotation of the ro-
tary.

onSl eep Define the function to be executed when the panel is about to

enter standby (sleep) mode.

onWake Define the function to be executed when the panel is woken
up from standby (sleep) mode.

rot ar ySound Controls the rotary click sound.

wi fi Enabl ed Allows restarting, enabling and disabling the network interface,
if it is enabled in the configuration file.

Class methods

schedul eAfter() Define a function to be executed once after a certain time.
Instance methods

page() Find the page with tag tagP in the activity.

wi dget () Search the activity for a widget in a specific page.

A.1.1. Instance properties

Al111.acti vi ty.label

Purpose

This is the text that is shown in the ActivityName status field when a page of the activity is displayed.

77

ProntoScript Developer's Guide

Read/Write : RW

The label of all activites can be changed, but the change will only persist as long as the current activity
is active.

Value : String

The text can be of any length but the number of characters displayed will depend on the size of the
activity status field widget.

Additional info

The activity name status widget displays the label of the current activity. This is initially the name that
is defined in the configuration file. By writing a value to the label property the displayed activity name
can be changed. When nul | is written to the label, the original name is restored.

Example

Example A.1. acti vi t y.label

CF.activity().l abel
CF.activity().l abel

"Busy. .. /1 Show Busy instead of the activity nane
null; // Show activity nanme again

Al112. activity.tag

Purpose

The tag is the activity name within the script. It is used to find a specific activity in the configuration file.

Read/Write : R

Value : String

When no tag is defined an empty string is returned
Al1.1.3. acti vity.onEntry
(available since application version 7.2.7)

Purpose

Define the function to be executed at activity entry.

Read/Write : RW

Value : onEntryCallback
A valid function, or nul | if no function is to be executed when the activity is entered.

Additional info

The function will be called after execution of the activity script, if any.

A1.14. acti vity.onExit

78

ProntoScript Developer's Guide

(available since application version 7.2.7)

Purpose

Define the function to be executed when leaving the activity.

Read/Write : RW

Value : onExitCallback
A valid function, or nul | if no function is to be executed when the activity is left.
A1.1.5. acti vi ty.onRotary
(available since application version 4.0.3)
Purpose

Define the function to be executed after a rotation of the rotary.

Read/Write : RW

Value : onRotaryCallback

The function to be called.
Al11.6.acti vity.onSleep
(available since application version 7.1.12)

Purpose

Define the function to be executed when the panel is about to enter standby (sleep) mode.

Read/Write : RW

Value : onSleepCallback

The function to be called.

Al1.17.acti vity.onWake

(available since application version 7.1.12)

Purpose

Define the function to be executed when the panel is woken up from standby (sleep) mode.

Read/Write : RW

Value : onWakeCallback

The function to be called.

79

ProntoScript Developer's Guide

A1.1.8.acti vity.rotarySound
(available since application version 7.2.4)

Purpose

Controls the rotary click sound.

Read/Write : RW

Value : Boolean
When set to t r ue (the default), turning the rotary wheel on the control panel will cause click
sounds to be played, if the rotary is enabled (Because of an action list assigned to the rotary in the

configuration file, or when an onRot ar y callback is set for the activity). When set to f al se, no
sound will be played.

A119.acti vi t y.wifiEnabled

(available since application version 5.0.3)
Purpose

Allows restarting, enabling and disabling the network interface, if it is enabled in the configuration file.

Read/Write : RW

Value : Boolean
Reads out t r ue if the network interface is enabled, f al se if the network interface is disabled.
When writing t r ue to this property, the network interface will be restarted.

Setting this property to f al se will cause the network interface to be disabled (conserving battery
power), until an activity switch is performed.

A.1.2. Class methods
A1.2.1. Activity.scheduleAfter()

(available since application version 5.0.3)
Synopsis
Activity.schedul eAfter(duration, onAfter)
Activity.schedul eAfter(duration,onAfter,id)
Purpose
Define a function to be executed once after a certain time.
Parameters

duration I nt eger

80

ProntoScript Developer's Guide

The duration after which the function should be executed in
milliseconds. Must be greater than 0.

OonAfter Functi on
The function to be scheduled.

id any
Optional parameter. The id can have any type and is passed as
a parameter to the OonAf t er function to enable usage of a
generic event function.

Exceptions

* Not enough arguments specified

* Argument is not an integer

* Argument is not a function

¢ Limit of simultaneous timers reached

* Failed

Additional info
The function is only called if the activity is still active after the specified duration. Multiple functions
can be scheduled in parallel with different durations. The execution of the functions will be scheduled
sequentially. A maximum number of 10 scheduled functions are supported in parallel.

Note

All control panel timers are paused while the control panel is asleep, postponing all
pending function calls.

A.1.3. Callback functions

The prototypes of the callback functions are listed below. In the callback functions, you can use 't hi s'
to refer to the scope of the actual input object that is causing the callback.

A1.31. onEntryCal | back

Purpose
Called when the activity is entered.
Parameters

None.

A1.3.2. onExi t Cal | back

Purpose

Called when the activity is left.

81

ProntoScript Developer's Guide

Parameters

None.

A1.3.3. onRot aryCal | back

Purpose
Called after a rotation of the rotary.
Parameters
clicks I nt eger
The number of clicks in the last 100ms.
Additional info
The parameter is positive after a clockwise rotation, negative after an anticlockwise rotation.
When the user stops rotating the rotary wheel, the last value is always a 0.

Example

Example A.2. onRot ar yCal | back

onRotary = function(clicks)

{
b
A1.34. onSl eepCal | back

/1 put the rest of your code here

Purpose

Called when the panel is about to enter standby (sleep) mode.
Parameters

None.
Example

Example A.3. onS| eepCal | back

onSl eep = function()

{
b
A1.3.5. onWakeCal | back

/'l put the rest of your code here

Purpose
Called when the panel is woken up from standby (sleep) mode.
Parameters

None.

82

ProntoScript Developer's Guide

Example

Example A.4. on\WakecCal | back

onWake = function()

{
%
A.1.4. Instance methods

/1 put the rest of your code here

Al141.activity.page()
Synopsis
activity. page()
activity. page(tagP)
Purpose

Find the page with tag tagP in the activity.

Parameters
tagP String
The tag of the page to search for. May be empty, nul | or
omitted.
May be a predefined tag.
Return
Page

The class instance corresponding to the found page, or nul | if no page found with the specified tag.
If no tag is specified, the current page is returned of the current activity.
Exceptions
* Argument is not a string
Additional info
See Section A.9, “Page class” for a description of the return value.

Refer to Appendix D, Predefined tags for the applicable predefined page tags.
A142 acti vity.widget()
Synopsis

activity.w dget (tagW

activity.w dget (tagWtagP)

83

ProntoScript Developer's Guide

Purpose

Search the activity for a widget in a specific page.

Parameters
tagW String
The tag of the widget to search for as defined in the editor.
tagP String
The tag of the page in which to search. May be empty, nul | or
omitted. In that case the current page of the current activity
is searched for the widget.
Return
W dget

The class instance corresponding to the found widget, or nul | if not found.
Exceptions

* No argument specified

* Argument is not a string
Additional info

Refer to Section A.15, “Widget class” for detailed information on the return type.

Refer to Appendix D, Predefined tags for the applicable x predefined page tags.

A.2. CF class

This class gives access to the configuration file of the control panel, containing all items programmed
by the editor.

Class Properties

ext ender Array that provides access to the extenders defined in the con-
figuration file. The array has a fixed size of 16 elements. Each
element matches the corresponding extender as configured in
the editor.

Class methods

activity() Provide access to one of the activities that are defined in the
configuration file.

page() Provide access to one of the pages in the configuration file.

wi dget () Search the configuration file for a specific button, panel, hard
key or firm key and returns the corresponding W dget class
instance.

84

ProntoScript Developer's Guide

A.2.1. Class properties
A2.1.1. CRextender

Purpose
Array that provides access to the extenders defined in the configuration file. The array has a fixed
size of 16 elements. Each element matches the corresponding extender as configured in the editor.
Read/Write : R

Value : Extender

An entry refers to a valid Extender class instance, or undef i ned if no extender with that id is
defined in the configuration file.

Additional info
Refer to Section A.5, “Extender class” for an extensive description of its properties.

Example

Example A.5. CF.extender
/'l Locates extender 0 and checks if it is configured:
var e = CF.extender[0];

if (le)
Di agnosti cs. | og("Extender 0 not avail able");

A.2.2. Class methods
A2.2.1. CRactivity()

Synopsis

CF.activity()

CF.activity(tagAh)
Purpose

Provide access to one of the activities that are defined in the configuration file.
Parameters

tagA String

The tag to look for. May also be empty, nul | or omitted.

Return

Activity

The first found activity object with the specified tag, or nul | if no activity was found in the config-
uration file with that tag. If no parameter is specified, or if an empty string is passed, the current
activity object is returned.

85

ProntoScript Developer's Guide

Exceptions
* Argument is not a String
Additional info
Refer to Section A.1, “Activity class” for detailed information on the activity members.
Refer to Appendix D, Predefined tags for the tags to be used for the home and system activity.

Example

Example A.6. CF.activity()
CF. acti vi ty("DVD"): returns the activity tagged "DVD".

CF.activity(""):returns the current activity object.
A2.2.2. Ckpage()
Synopsis

CF. page()

CF. page(t agP)

CF. page(tagP, t agA)

Purpose
Provide access to one of the pages in the configuration file.
Parameters
t agP String
Tag name of the page to search for. If both t agA and t agP
are omitted, empty or nul |, the current page is returned of
the current activity. In this case t agA is ignored.
tagA String
Tag name of the activity in which to search. If omitted, empty
or nul |, the current activity is searched.
Return
Page
A Page class instance corresponding to the first page found with the tag t agP in the activity with
tag t agA
Exceptions

* Argument is not a string
Additional info

Refer to Section A.9, “Page class” for detailed information on the page class members.

86

ProntoScript Developer's Guide

Refer to Appendix D, Predefined tags for the tags to be used for the home and system page.

Example

Example A.7. CF.page()
CF. page("2", "DVD'"):returns the page with tag "2" from the activity tagged "DVD".
CF. page(" Macr 0s") : searches the current activity for the page tagged "Macr os".

CF. page(); : returns the current page.

A2.2.3. CRwidget()

Synopsis
CF. wi dget (t agW
CF. wi dget (tagW t agP)
CF. wi dget (tagWt agP, t agA)
Purpose
Search the configuration file for a specific button, panel, hard key or firm key and returns the corre-
sponding W dget class instance.
Parameters
tagW String
The name of the widget to search for.
tagP String
Tag name of the page that contains the widget. If both t agA
and t agP are omitted, empty or nul |, the current page is
searched.
t agA String
Tag name of the activity that contains the widget. If t agA is
omitted, empty or nul |, the current activity is searched.
Return
W dget
The class instance corresponding to the found widget, or nul | if not found.
Exceptions

* Argument is not a string
Additional info

The search order is not defined. Therefore it is not advisable to give the same tag to multiple activities,
pages or widgets.

87

ProntoScript Developer's Guide

Refer to Section A.15, “Widget class” for detailed information on the return type.

Refer to Appendix D, Predefined tags for the applicable predefined page tags.

Example

Example A.8. CF.widget()

CF. wi dget ("Al Il On", "2", "DVD"):searches the widget tagged "Al | On" on the page with
tag "2" on the activity tagged "DVD".

CF. wi dget ("On", "Macros"): returns the button tagged "On" on the "Macr 0s" page in the
current activity.

A.3. Diagnostics class

The Di agnost i cs class can be used to log messages in the diagnostics list. This list can be inspected
by pressing and holding the following buttons in the stated order: Backlight+Menu+Firm key #2.

Each line of the diagnostics list can hold up to 80 characters, and the list can hold up to 200 lines.
When a new message is logged, it is added on top of the list. When more than 200 lines are stored,

the oldest ones are discarded. When the same message is logged multiple times within one second,
it is logged only once.

Class methods

 og() Add a message to the diagnostics log.

A.3.1. Class methods

A.3.1.1. Diagnostics.log()
Synopsis

Di agnosti cs. | og(s)
Purpose

Add a message to the diagnostics log.

Parameters
S String
The message text to be displayed.
Exceptions
None.

Additional info

The message will be truncated to fit on one line of the diagnostics widget. The new message will
be added on top of the list.

88

ProntoScript Developer's Guide

Example

Example A.9. Diagnostics.log()

Di agnostics.log("extender " + i + " does not respond");

A.4. DNSResolver class

(available since application version 7.2.12)
The DNSResol ver class can be used to look up the IP address of a host, using the Domain Name
System (DNS), using the DNS servers set in the editor (for configurations using static IP addresses),

or assigned by the DHCP server.

Class methods

resol ve() Resolve a DNS name to an IP address.

A4.1. Class methods
A4.1.1. DNSResolverresolve()

Synopsis
DNSResol ver. resol ve(nane, onSuccess)
DNSResol ver. resol ve(hanme, onSuccess, onFai | ure)
DNSResol ver. resol ve(nanme, onSuccess, onFai | ur e, param
Purpose
Resolve a DNS name to an IP address.
Parameters
nane String
The host name for which to look up the IP address.
onSuccess dnsOnSuccessCal | back
The function to be called when the name lookup is complete.
onFai l ure dnsOnFai | ureCal | back
The function to be called if the name could not be resolved.
par am oj ect
A reference object which will be passed on to the callback
functions.
Exceptions

* Not enough arguments specified

* Argument is not a string

89

ProntoScript Developer's Guide

* Argument is not a function

Example

Example A.10. DNSResolver.resolve()
DNSResol ver. resol ve("ww. phi | i ps. cont',
function(addr) {

System print("Result: "+addr);

e
function (p) {

Systemprint("Failed to | ookup | P address of "+p);
}, "webserver");

A4.2. Callback functions

The prototypes of the callback functions are listed below.
A421. dnsOnSuccessCal | back

Purpose

Called when the DNS name lookup succeeds.

Parameters
addr ess String
The IP address corresponding to the host name for which a
lookup was requested.
par am oj ect

The reference object passed to the r esol ve() method.
A422. dnsOnFai | ureCal | back

Purpose

Called when the DNS name lookup fails.
Parameters

par am oj ect

The reference object passed to the r esol ve() method.

A.5. Extender class

The Extender class provides an interface to a RF extender, including its input ports, serial ports and
relay outputs. The extender configuration is read from the configuration file, so in order to be able
to control an extender from a script, it needs to be properly defined in the editor. This means that it
should be marked as selected in the Extender tab of the System Properties of the configuration file.

Instance Properties

i nput The i nput [] array contains the power sense inputs of an
extender. Normally, a serial extender has 4 power sense inputs.

90

ProntoScript Developer's Guide

rel ay

seri al

A.5.1. Instance properties

A.5.1.1. ext ender .input

Purpose

The inputs are numbered from 0 to 3. A wireless extender has
no power sense inputs. This can be checked by comparing the
array elements with undef i ned.

Array giving access to a specific extender relay port. A serial
extender has 4 relay outputs numbered from 0 to 3. A wire-
less extender has no relay ports, so the array elements will be
undef i ned.

This array gives access to the serial port with the specified
number of an extender. A serial extender has 4 serial ports
numbered from 0 to 3. A wireless extender has no serial ports
and the array elements will be undef i ned.

The i nput [] array contains the power sense inputs of an extender. Normally, a serial extender
has 4 power sense inputs. The inputs are numbered from 0 to 3. A wireless extender has no power
sense inputs. This can be checked by comparing the array elements with undef i ned.

Read/Write : R

Value : Input

Instance of the specified extender input, or undef i ned if the extender is not defined as a serial

extender.

Example

Example A.11. ext ender .input

/1 Get input port O on extender O:
var p = CF.extender[O0].input[O0];

A.5.1.2. ext ender .relay

Purpose

Array giving access to a specific extender relay port. A serial extender has 4 relay outputs numbered
from 0 to 3. A wireless extender has no relay ports, so the array elements will be undef i ned.

Read/Write : R

Value : Relay

Instance of the specified extender relay port, or undef i ned if the extender is not serial or the

port number is out of range.

Additional info

Refer to Section A.10, “Relay class” for more details on how to control the extender relays.

9"

ProntoScript Developer's Guide

Example

Example A.12. ext ender .relay

/1l CGet relay port O on extender O:
var p = CF.extender[O0].relay[O0];

A.5.1.3. ext ender .serial

Purpose
This array gives access to the serial port with the specified number of an extender. A serial extender
has 4 serial ports numbered from 0 to 3. A wireless extender has no serial ports and the array

elements will be undef i ned.

Read/Write : R

Value : Serial

Instance of the specified extender serial port, or undef i ned if the extender is not serial or the
port number is out of range.

Additional info
Refer to Section A.11, “Serial class” for more details on the extender serial ports.
Example

Example A.13. ext ender .serial

/| Get access to serial port 0 of extender O:
var p = CF.extender[0].serial[0];

A.6. GUI class

Control the graphical user interface of the control panel and access the objects that are displayed
on the screen.

Class Properties
hei ght The height of the control panel's LCD screen.

wi dt h The width of the control panel's LCD screen.

Class methods

addBut t on() Create a new soft button, in the current user interface state.
addPanel () Create a new panel, in the current user interface state.
alert() Display a modal dialog box.

get Di spl ayDat e() Get the control panel date.

get Di spl ayTi ne() Get the control panel time.

92

ProntoScript Developer's Guide

updat eScr een() Force a screen update.

wi dget () Search for a widget that is currently displayed on the screen.
This also includes firm keys and hard keys.

A.6.1. Class properties
A.6.1.1. GUl.height

(available since application version 7.2.18)
Purpose

The height of the control panel's LCD screen.

Read/Write : R

Value : Integer

The height, in pixels, of the control panel's LCD screen.
A.6.1.2. GUlLwidth

(available since application version 7.2.18)
Purpose

The width of the control panel's LCD screen.

Read/Write : R

Value : Integer

The width, in pixels, of the control panel's LCD screen.

A.6.2. Class methods
A6.2.1. GUlL.addButton()

(available since application version 7.2.15)
Synopsis
QU . addBut t on()
Purpose
Create a new soft button, in the current user interface state.
Parameters

None.

93

ProntoScript Developer's Guide

Return

W dget

The widget instance of the newly created button.
Exceptions

* Page not available
Additional info

The newly created button is only available in the current page, and will disappear when the current
page is left.

When created, the button will have an initial Wi dt h and hei ght of 0,andits vi Si bl e property
will be set to f al se. To make the button visible, these properties must be changed.

The created button can be removed again from the user interface using the widget's renmove()
instance method.

Example

Example A.14. GUl.addButton()

Dynamically creating a button:

o))
=

b;
= @UJ . addButton();
.left = 120;
top = 80;
wi dth = 100;
hei ght = 50;
.fontSize = 10;
| abel = "Dynam c button";
. set BgCol or (0x0000ff, 0);
. set BgCol or (0x00ff 00, 1);
.Visible = true;

A.6.2.2. GUl.addPanel()

(available since application version 7.2.15)
Synopsis

QU . addPanel ()
Purpose

Create a new panel, in the current user interface state.

Parameters

None.
Return

W dget

The widget instance of the newly created panel.

94

ProntoScript Developer's Guide

Exceptions

* Page not available

Additional info

Example

The newly created panel is only available in the current page, and will disappear when the current
page is left.

When created, the panel will have an initial wi dt h and hei ght of 0, andits vi si bl e property
will be set to f al se. To make the panel visible, these properties must be changed.

The created panel can be removed again from the user interface using the widget's remnmove()
instance method.

Example A.15. GUl.addPanel()

Dynamically creating a panel:

var p;
p = QU . addPanel ();

p.left = 120;

p.top = 180;

p.wi dth = 100;

p. hei ght = 50;

p.fontSi ze = 10;

p. | abel = "Dynanmic panel";
p. bgcol or = 0x0000f f;
p.visible = true;

A.6.2.3. GUl.alert()

(available since application version 7.1.17)

Synopsis

QU . al ert (nessage)
Purpose

Display a modal dialog box.
Parameters

nessage String

Message to be shown in the popup box.

Exceptions

None.

Additional info

The dialog box shown is not customizable; it is always shown with a single OK button. For dialog
boxes which integrate better with a customized look and feel of a project, it is suggested to use
regular panels and buttons. The al ert method is intended more as a facility to be used during
development of a script (for example, to catch unexpected exceptions).

95

ProntoScript Developer's Guide

6 Note
The GUI . al ert () method is not a blocking call; even though the dialog box shown

is modal (i.e., all other user interaction is suspended until the OK button is pressed),
the script will resume execution immediately after calling this method.

Example

Example A.16. GUl.alert()
Catching an exception:

try {
GUl . wi dget ("P1") . col or = 0x0000ff;

} catch (e) {
QU .alert(e.name + ":\n" + e.nessage);
}
A.6.24. GUI.getDisplayDate()
Synopsis
QU . get Di spl ayDat e()

Purpose

Get the control panel date.

Parameters

None.
Return

String

Contains the date as shown in the Date status widget.
Exceptions
None.
Additional info
This method returns a string representation of the date, taking into account the time zone and daylight

savings settings as set in ProntoEdit Professional. This is distinct from the date obtained with the
Core JavaScript Dat e class, which always operates in UTC on the control panel.

A.6.2.5. GUl.getDisplay Time()
Synopsis

GUI . get Di spl ayTi me()
Purpose

Get the control panel time.

96

ProntoScript Developer's Guide

Parameters

None.
Return

String

Contains the time as shown in the Time status widget.
Exceptions
None.
Additional info
This method returns a string representation of the time, taking into account the time zone and

daylight savings settings as set in ProntoEdit Professional. This is distinct from the time obtained with
the Core JavaScript Dat e class, which always operates in UTC on the control panel.

A.6.2.6. GUl.updateScreen()
Synopsis

@Ul . updat eScr een()
Purpose

Force a screen update.
Parameters

None.
Exceptions

None.
Additional info

Because during script execution the screen is not updated, an explicit screen update can be enforced
with this function call. Script execution is temporarily stopped until the screen update is finished.

A.6.2.7. GUlL.widget()

Synopsis

GUl . wi dget (t agW
Purpose

Search for a widget that is currently displayed on the screen. This also includes firm keys and hard keys.
Parameters

tagwW String

The tag of the widget to search for as defined in the editor.

97

ProntoScript Developer's Guide

Return

W dget

The class instance corresponding to the found widget, or nul | if not found.
Exceptions

* No argument specified

* Argument is not a string
Additional info

Refer to Section A.15, “Widget class” for detailed information on the return type.

A.7. Image class

This class represents an image in the configuration file or on the screen. It is used when dynamically
creating an image or retrieving the image from a button, panel or firm key in order to copy it to
another button, panel or firm key.

This can be useful when creating gallery pages with artwork widgets or when creating animated
widgets with a changing image.

Instance Properties

hei ght Get the vertical size of the image in pixels.

wi dt h Get the horizontal size of the image in pixels.

A.7.1. Image class constructor

(available since application version 4.0.5)

A.71.1. Image()

Purpose

Create a new Image instance.

Parameters
S String
The image creator supports PNG, JPG and uncompressed
standard BMP format. No exceptions are thrown if data can
not be interpreted correctly.
Return
| mage

A new Image class instance.
Exceptions

* Not enough arguments specified

98

ProntoScript Developer's Guide

Additional info

The parameter must be raw bitmap data stored as a St r i ng. This means that it is not the filename
of the image.

Example

Example A.17. Image constructor

var nylmage = new | mage(bit mapdat a) ;
A.7.2. Instance properties

A.721.1 mage height

Purpose
Get the vertical size of the image in pixels.

Read/Write : R
Value : Integer

Applicable for
Button, Firm key, Panel

Additional info

The DPI of the image is not used.
A.7.2.2.1 mage.width

Purpose

Get the horizontal size of the image in pixels.

Read/Write : R
Value : Integer

Applicable for
Button, Firm key, Panel
Additional info

The DPI of the image is not used.

A.8. Input class

This class represents a power sense input port on a serial extender.

99

ProntoScript Developer's Guide

Instance Properties

onDat a Define the callback function for extender input port data.
onError Define the callback function for extender input port errors.
onTi meout Define the callback function when a timeout occurs during an

asynchronous mat ch() orwait () operation.

Instance methods

get () Get the value of the power sense input.

mat ch() Wait for the port state to match a specific state. The operation
completes as soon as the port is in the requested state or when
the indicated time has passed.

wai t () Wiait for an input port to change state. The operation com-

pletes as soon as the port state changes or when the indicated
time has passed.

A.8.1. Instance properties

A.8.1.1.1 nput .onData

Purpose

Define the callback function for extender input port data.
Read/Write : RW

When assigned, the callback will remain defined as long as the current activity remains active.
Value : OninputDataCallback

Set to nul | for synchronous (blocking) operation.

A.8.1.2.1 nput .onError

Purpose

Define the callback function for extender input port errors.
Read/Write : RW

Persistent as long as the current activity remains active.
Value : onlnputErrorCallback

Set to a valid function or to nul | if no error handling is desired.
Additional info

In case of an erroneous mat ch() orwrite() operation, the OnErr or function is called.

A.8.1.3.1 nput .onTimeout

100

ProntoScript Developer's Guide

Purpose

Define the callback function when a timeout occurs during an asynchronous mat ch() orwai t ()
operation.

Read/Write : RW
Persistent as long as the current activity remains active.

Value : onlnputTimeoutCallback

A.8.2. Callback functions

The prototypes of the callback functions are listed below. In the callback functions, you can use 't hi s
to refer to the scope of the actual input object that is causing the callback.

A.8.2.1. onl nput Dat aCal | back

Purpose

Called when an asynchronous mat ch() orwai t () completes.
Parameters

state Bool ean

The state of the power sense input: t r ue if high, f al se if low.
A.8.2.2. onl nput Error Cal | back

Purpose
Called when an error occurs during an asynchronous get (), mat ch() orwai t () operation.
Parameters
e Panel Err or
The error that occurred as an Er r or object
Example

Example A.18. onl nput Error Cal | back

/1 The error string can be retrieved by casting e to a string:
System print(e);

A.8.2.3. onl nput Ti nmeout Cal | back
Purpose
Called when a timeout occurs during an asynchronous mat ch() orwai t () operation.

Parameters

None.

A.8.3. Instance methods

101

ProntoScript Developer's Guide

Note
One extender can only reference one request at the same time. The below methods will

fail and throw an exception when the extender is busy with another request. Therefore
avoid using long timeout values!

A.8.3.1.1 nput .get()
Synopsis

i nput . get ()
Purpose

Get the value of the power sense input.

Parameters

None.
Return

Bool ean

t r ue if the input is high, f al se if the input is low.
Exceptions
* Failed (extender error)

Additional info

The get () is executed as a blocking call, i.e. script execution continues only after the extender has
replied with the requested power sense value.

A.8.3.2. 1 nput .match()
Synopsis
i nput. mat ch(state, tineout)

Purpose

Wait for the port state to match a specific state. The operation completes as soon as the port is in
the requested state or when the indicated time has passed.

Parameters
state Bool ean
The requested state to wait for.
ti meout | nt eger
The maximum time in milliseconds to wait for the specified
state.
Return
Bool ean

102

ProntoScript Developer's Guide

t r ue if port state changed in time, f al se otherwise.
Exceptions
* Not enough arguments specified
* Argument is not a boolean
» Argument is not a positive integer number
* Failed (extender error)
Additional info
If no onDat a function is specified, the script execution is halted until the operation completes.
Otherwise, the script continues execution and the onDat a function is called when the operation

completes. In case of a timeout, the onTi meout callback function is invoked instead. Exceptions
are passed to the OonEr r or callback.

A.8.3.3.1 nput .wait()
Synopsis

i nput . wai t (ti meout)
Purpose

Wait for an input port to change state. The operation completes as soon as the port state changes
or when the indicated time has passed.

Parameters
ti meout I nt eger
The maximal time in milliseconds to wait for the specified port
to change state.
Return
Bool ean

t r ue if the port state was changed, or f al se if timeout.
Exceptions

* No argument specified

* Argument is not a positive integer number

* Failed (extender error)

Additional info

If no onDat a callback function is specified, script execution is halted until the operation completes.
Otherwise, the script continues execution and the specified onDat a function is called when the
operation completes. If a timeout occurs, the onTi meout function is called instead. The onEr r or
function is called in case of an exception.

103

ProntoScript Developer's Guide

A.9. Page class

This class allows access to the properties of a page in the configuration file.

Instance Properties

| abel The name of the page as defined in the editor.

onEntry Define the function to be executed at page entry.

onExi t Define the function to be executed when leaving the page.

repeat | nt erval This member stores the time after which the page script is
repeated.

tag Get the tag of the page.

Instance methods

wi dget () Searches the page for a specific button or panel and returns
the corresponding W dget class instance.

A.9.1. Instance properties

A9.1.1. page.label

Purpose

The name of the page as defined in the editor.

Read/Write : R
Value : String

Additional info

The page name is not visible on the control panel, but it can be defined in the editor.
A9.1.2. page.onkntry
(available since application version 7.2.7)

Purpose

Define the function to be executed at page entry.

Read/Write : RW

Value : onEntryCallback

A valid function, or nul | if no function is to be executed when the page is entered.
Additional info

The function will be called after execution of the page script, if any.

104

ProntoScript Developer's Guide

A9.1.3. page.onkxit
(available since application version 7.2.7)

Purpose
Define the function to be executed when leaving the page.

Read/Write : RW

Value : onExitCallback

A valid function, or nul | if no function is to be executed when the page is left.

A9.14. page.repeatinterval

Purpose

This member stores the time after which the page script is repeated.
Read/Write : RW

The page repeat interval can only be set for the current page.
Value : Integer

Page script repeat interval in milliseconds. If the value is zero, the page script is not repeatedly ex-
ecuted.

A9.1.5. pagetag

Purpose

Get the tag of the page.
Read/Write : R

Value : String
String containing the page tag.
Additional info

The tag is used to find the page in the configuration file.

A.9.2. Callback functions

The callback functions will be called in the scope of the page object instance.

The prototypes of the callback functions are as follows:

A9.21. onEntryCal | back

Purpose

Called when the page is entered.

105

ProntoScript Developer's Guide

Parameters

None.
A9.22. onExitCall back

Purpose
Called when the page is left.
Parameters

None.

A.9.3. Instance methods

A9.3.1. page.widget()
Synopsis

page. wi dget (t agWy
Purpose

Searches the page for a specific button or panel and returns the corresponding W dget class instance.

Parameters
tagW String
Tag name of the widget to search for.
Return
W dget
Class instance corresponding to the first matching widget in the page, or nul | if the widget is not
found.
Exceptions

* No argument specified

* Argument is not a string
Additional info

Refer to Section A.15, “Widget class” for detailed information on the page class members.

Example

Example A.19. page.widget()

p. wi dget (" RESULT") : searches the widget tagged "RESULT" on page p.

A.10. Relay class

A relay port of a serial extender can be controlled with this class type.

106

ProntoScript Developer's Guide

Instance methods

get () Inspect the actual value of a relay output.
set () Set a relay output in a specific state.
toggl e() Change the relay output state. If the relay was closed, it is

opened. If it was open, it is closed.

A.10.1. Instance methods

A101.1.r el ay.get()
Synopsis
rel ay. get()
Purpose
Inspect the actual value of a relay output.
Parameters
None.
Return
Bool ean
t r ue if the relay is closed, f al se otherwise.
Exceptions
* Failed (extender error)
Additional info

The get () is executed as a blocking call, i.e. script execution continues only after the extender has
replied with the requested relay state.

A101.2.r el ay.set()

Synopsis
rel ay. set (state)
Purpose
Set a relay output in a specific state.
Parameters
state Bool ean
Set to t r ue if the relay should be closed, f al se if it should
be open.
Exceptions

* Failed (extender error)

107

ProntoScript Developer's Guide

Additional info

The set () is executed as a blocking call, i.e. script execution continues only after the extender has
performed the requested operation.

A10.1.3.r el ay toggle()
Synopsis
rel ay. toggl e()
Purpose
Change the relay output state. If the relay was closed, it is opened. If it was open, it is closed.
Parameters
None.
Exceptions
* Failed (extender error)
Additional info

Thet oggl e() is executed as a blocking call, i.e. script execution continues only after the extender
has performed the requested operation.

A.11. Serial class

A serial port of an extender can be used to send or receive data. A serial port has its own input buffer
on the extender. This buffer accumulates incoming data until the control panel issues ar ecei ve()
command. When receiving data on the serial port, the received bytes will be removed from the input
buffer, so that they will not be read twice. When sending data on the serial port, its input buffer
will be flushed. Please take in mind that an empty string parameter does not clear the input buffer,
while a non empty string does.

Send and receive operations can be combined into one combined r ecei ve() command in order
to support multiple control panels querying for data.

Instance Properties

bitrate Set the serial communication speed.
databits Set the number of data bits for the serial communication.
onDat a Define the function that is called when data is received after a

successful call to recei ve() ormatch().

onError Define the function that is called when an error occurs during
receive() ormatch().

onTi meout Define the callback function when a timeout occurs during an
asynchronous r ecei ve() ormat ch().

parity Set the parity of the serial communication.

stopbits Define the number of stop bits for the serial communication.

108

ProntoScript Developer's Guide

Instance methods

mat ch() First transmit an optional string on the serial port to query for
data and then start receiving on the same port.

receive() First transmit an optional string on the serial port to query for
data and then start receiving on the same port.

send() To transmit data on the serial port using the communication
settings as specified in the above data members.

A.11.1. Instance properties

A11.1.1.seri al bitrate

Purpose

Set the serial communication speed.

Read/Write : RW

Value : Integer

Valid values are: 2400, 4800, 9600, 14400, 19200, 28800, 31250, 38400, 57600 and 115200 bits per
second.

A11.1.2.ser i al .databits

Purpose

Set the number of data bits for the serial communication.

Read/Write : RW

Value : Integer

Valid values are 7 and 8.

A11.1.3.seri al .onData

Purpose

Define the function that is called when data is received after a successful call to r ecei ve() or
mat ch().

Read/Write : RW

Value : onSerialDataCallback
Set to nul | for synchronous (blocking) operation.
Additional info

If an onDat a function is defined but onTi meout is nul |, then in case of a timeout the onDat a
callback will be called with the received data.

109

ProntoScript Developer's Guide

A11.14.seri al .onError

Purpose
Define the function that is called when an error occurs during r ecei ve() or mat ch().

Read/Write : RW

Value : onSerialErrorCallback

Set to nul | if no error handling is desired.

A11.1.5.seri al .onTimeout

Purpose

Define the callback function when a timeout occurs during an asynchronous r ecei ve() or
mat ch().

Read/Write : RW
Persistent as long as the current activity remains active.

Value : onSerialTimeoutCallback

Additional info

If omitted, the onDat a callback will be called with the received data.
A11.1.6.seri al .parity

Purpose
Set the parity of the serial communication.

Read/Write : RW

Value : Integer
Valid values are: 0 (none), 1 (odd) and 2 (even).

Additional info

Since application version 7.2.18, the pari t y property can also be set using string literals: “none”,
“odd” and “even”, however when retrieving the property, integer values will still be returned.

A11.1.7.seri al stopbits

Purpose

Define the number of stop bits for the serial communication.

Read/Write : RW

110

ProntoScript Developer's Guide

Value : Integer

Valid values are 1 and 2.

A.11.2. Callback functions

The prototypes of the callback functions are as follows. In the callback functions you can use 't hi s'
to refer to the scope of the Serial object that is causing the callback.

A1121. onSeri al Dat aCal | back

Purpose
Called when an asynchronous r ecei ve() or mat ch() completes successfully.
Parameters
S String
The data that was received on the serial port.
Additional info
This string can contain binary data.

Use s.length to get the number of bytes received.

A11.2.2. onSeri al Error Cal | back

Purpose

Called when an error occurs during an asynchronous r ecei ve() or match().

Parameters
e Panel Error
An instance of the Panel Er r or class for the error that oc-
curred.
Example

Example A.20. onSeri al Error Cal | back

The error string can be retrieved by casting e to a string:

System print(e);
A11.2.3. onSeri al Ti meout Cal | back

Purpose
Called when a timeout occurs.
Parameters
S String

The partial data that was received on the serial port.

111

ProntoScript Developer's Guide

Additional info

This string can contain binary data. Use s.length to get the number of bytes received.

A.11.3. Instance methods

Note

One extender can only reference one request at the same time. The methods below will
fail and throw an exception when the extender is busy with another request. Therefore,
avoid using long timeout values!

A11.31.seri al match()

Synopsis
serial.match(s,term nator,tineout)
Purpose
First transmit an optional string on the serial port to query for data and then start receiving on the
same port.
Parameters
S String
String to be transmitted, may be nul | or empty.
term nat or String
The terminator string to wait for.
ti meout I nt eger
The maximal time in milliseconds to wait for the serial data
to arrive.
Return
String
The received data including the terminator string, or an empty string in case of asynchronous oper-
ation.
Exceptions

* Argument is not a string

* Argument is not an integer number

* Argument is not a positive integer number
* Failed (extender error)

Additional info

The operation is complete if the specified terminator string is received or until timeout milliseconds
have passed. In the last case the currently received data will be returned.

112

ProntoScript Developer's Guide

If no onDat a function is specified, the script execution is halted until the operation completes and
the received data is returned. Otherwise, the script continues execution and the specified onDat a
function is called when the operation completes.

A11.3.2.seri al .receive()

Synopsis
serial . receive(s, count, tineout)
Purpose
First transmit an optional string on the serial port to query for data and then start receiving on the
same port.
Parameters
S String
String to be transmitted, may be nul | or empty.
count I nt eger
The number of bytes to receive.
ti meout I nt eger
The maximal time in milliseconds to wait for the serial data
to arrive.
Return
String
The received data, or an empty string in case of asynchronous operation. Can contain binary data.
Exceptions

* Argument is not an integer number

* Argument is not a positive integer number
* Failed (extender error)

* Maximum blocking read length exceeded

Additional info

The operation is complete if count bytes are received or until timeout milliseconds have passed. In
the last case less than count bytes will be returned.

If no onDat a function is specified, the script execution is halted until the operation completes and
the received data is returned. Otherwise, the script continues execution and the specified onDat a
function is called when the operation completes.

A11.33.seri al .send()
Synopsis

serial .send(s)

113

ProntoScript Developer's Guide

Purpose
To transmit data on the serial port using the communication settings as specified in the above data
members.
Parameters
S String
The data to be transmitted. May contain binary data. Maximal
length is 512 bytes.
Exceptions

* No argument specified
* Argument is not a string

* Failed (extender error)
Additional info

The send is executed as a synchronous (blocking) operation. Script execution is halted until the
extender replies that the requested operation is completed.

A12. System class

The system class gives access to some general system level functionality. Furthermore it manages
global information that needs to be shared between different activities. This information is stored as
a list of name-value string pairs. The string values can contain binary data. The length is restricted
by the available amount of memory.

Class methods
addEvent Li st ener ()

del ay()

get d obal ()

get Appl i cati onVer -
sion()

getBatteryStatus()
get Boot | oader Ver si on()

get FreeCFMenor y()

get Fi r mvar eVer si on()
get | Rver si on()

get Model ()

get Net | i nkSt at us()

get Seri al ()

Registers a function to be called for a class of system events.

Wait for a specific time. This blocks script execution during
the specified time.

Retrieve a string value stored in the global variables list.

Obtain the control panel's application version.

Obtain the control panel's battery status.
Obtain the control panel's boot loader version.

Obtain the percentage of free storage space available for a con-
figuration file.

Obtain the control panel's firmware version.

Obtain the control panel's infrared software version.
Obtain the control panel's model name.

Obtain the control panel's network interface status.

Obtain the control panel's serial number.

114

ProntoScript Developer's Guide

i ncl ude()

print()

renoveEvent Li st ener ()

reset ()
set DebugMask()

set @ obal ()

A.12.1. Class methods

A121.1. System.addEventListener()

(available since application version 7.2.4)

Causes a library script to be included. This library script will
be executed, causing the classes and variables declared in that
library script to become available in the global scope.

Display a debug message on the debug output panel.

Unregisters an event listener previously registered with
Syst em addEvent Li st ener () .

Restart the application running on the control panel.
Controls what is being shown in the _PS_DEBUG _ panel.

Store a string item in the global variables list.

String

"oy

Type of events to listen for. Valid types are “bat t er y"” and

“netlink”.
syst enEvent Li st ener

The function to be executed once an event of the requested
type occurs.

Synopsis

Syst em addEvent Li st ener (type, | i st ener)
Purpose

Registers a function to be called for a class of system events.
Parameters

type

l'i stener
Exceptions

* Not enough arguments specified
* Argument is not a function

* Invalid event type

A12.1.2. System.delay()
Synopsis
Syst em del ay(durati on)

Purpose

Wait for a specific time. This blocks script execution during the specified time.

115

ProntoScript Developer's Guide

Parameters
duration I nt eger
Duration of the delay in milliseconds.
Exceptions

* No argument specified
* Argument is not an integer
Additional info

The screen contents will not be refreshed during a delay. If this is desired, use the schedul eAf t er
function instead.

A12.1.3. System.getGlobal()
Synopsis

System get G obal (nane)
Purpose

Retrieve a string value stored in the global variables list.

Parameters
name String
The name of the global variable to find.
Return
String

The value of the global variable, or nul | if the name is not found.
Exceptions

* No argument specified

¢ Invalid name

A12.1.4. System.getApplicationVersion()
(available since application version 7.1.3)
Synopsis

Syst em get Appl i cati onVer si on()
Purpose

Obtain the control panel's application version.
Parameters

None.

116

ProntoScript Developer's Guide

Return

String

Control panel firmware version, e.g. "7. 1. 2"
Exceptions

None.

A12.1.5. System.getBatteryStatus()
(available since application version 7.2.4)
Synopsis

System get Batt er ySt at us()

Purpose

Obtain the control panel's battery status.

Parameters
None.
Return
String
Either “criti cal ”, “enpty”, “l evel 17, “l evel 27, “l evel 37, “l evel 4”, “char gi ng” or
“max”.
Exceptions
None.

A12.1.6. System.getBootloaderVersion()

(available since application version 7.1.3)
Synopsis

Syst em get Boot | oader Ver si on()
Purpose

Obtain the control panel's boot loader version.

Parameters

None.
Return

String

Control panel boot loader version, e.g. “BFUL. 9. 3”

117

ProntoScript Developer's Guide

Exceptions

None.

A12.1.7. System.getFreeCFMemory()

(available since application version 7.1.3)
Synopsis
Syst em get Fr eeCFMenor y()
Purpose
Obtain the percentage of free storage space available for a configuration file.
Parameters
None.
Return

I nt eger

A number between 0 (no more storage space available) and 100 (no storage space in use).
Exceptions
None.
A12.1.8. System.getFirmwareVersion()
(available since application version 7.1.3)
Synopsis
Syst em get Fi r mnvar eVer si on()

Purpose

Obtain the control panel's firmware version.

Parameters

None.
Return

String

Control panel firmware version, e.g. “TSU9600 V2. 1”

Exceptions

None.

A12.1.9. System.getIRVersion()

118

ProntoScript Developer's Guide

(available since application version 7.1.3)
Synopsis

Syst em get | RVer si on()
Purpose

Obtain the control panel's infrared software version.
Parameters

None.
Return

String

Control panel infrared software version, e.g. “4. 0. 20”
Exceptions

None.

A12.1.10. System.getModel()

(available since application version 7.1.3)
Synopsis

Syst em get Model ()
Purpose

Obtain the control panel's model name.
Parameters

None.
Return

String

Control panel model name, e.g. “TSU9600”
Exceptions

None.

A12.1.11. System.getNetlinkStatus()
(available since application version 7.2.4)
Synopsis

System get Net | i nkSt at us()

119

ProntoScript Developer's Guide

Purpose

Obtain the control panel's network interface status.

Parameters

None.
Return

String

Either “di sabl ed”, “sl eepi ng”, “wi fi - di sconnect ed”, “wi fi -noi p”, “wi fi-stan-
dal one”, “wi fi-level 17, “wi fi-level 27, “wi fi-level 37, “wi fi-Ievel 47, “et h-
di sconnect ed”, “et h- noi p” or “et h- ok™.

Exceptions

None.
A12.1.12. System.getSerial()

(available since application version 7.1.2)
Synopsis

System get Seri al ()
Purpose

Obtain the control panel's serial number.

Parameters

None.
Return

String

Control panel serial number, e.g. “0000063021”
Exceptions

None.

A12.1.13. System.include()

(available since application version 7.1.1)
Synopsis

System i ncl ude(nane)
Purpose

Causes a library script to be included. This library script will be executed, causing the classes and
variables declared in that library script to become available in the global scope.

120

ProntoScript Developer's Guide

Parameters
nanme String
Filename of the library script.
Exceptions

* No argument specified

¢ Invalid name

A12.1.14. System.print()

Synopsis
System print(s)
Purpose
Display a debug message on the debug output panel.
Parameters
S String
Text to be displayed. This text is appended to the label of the
debug window. Maximum length: 99 characters. If longer, will
be truncated.
Exceptions

None.
Additional info

The debug panel is a panel or button tagged “_PS_DEBUG ”. When defining this panel in the editor,
make sure it has the text alignment set to bottom left, so that the newly added text always is visible.

Use “\ n” to insert line breaks in the text output.
A12.1.15. System.removekventListener()

(available since application version 7.2.4)

Synopsis

Syst em renoveEvent Li st ener (type, | i st ener)
Purpose

Unregisters an event listener previously registered with Syst em addEvent Li st ener () .
Parameters

type String

Type of events the event listener was registered for. Valid types
are “bat t ery” and “net | i nk”.

121

ProntoScript Developer's Guide

listener syst enEvent Li st ener
The event listener which is to be removed.
Exceptions
* Not enough arguments specified
* Argument is not a function

* Invalid event type
A12.1.16. System.reset()

(available since application version 7.2.5)
Synopsis

System reset ()

System reset (har d)
Purpose

Restart the application running on the control panel.

Parameters
hard Bool ean
Indicates if the control panel should be completely restarted
(true) ornot (f al se).
If not specified, f al se is assumed.
Exceptions
None.

A121.17. System.setDebugMask()
Synopsis

Syst em set DebugMask(mask)
Purpose

Controls what is being shown in the _PS_DEBUG _ panel.
Parameters

mask I nt eger

Bitmask specifying the desired debugging facilities.

If bit 0 is set, System.print messages are dumped to the
_PS_DEBUG _ panel.

Bit 1 controls logging of every script and function entry.

122

ProntoScript Developer's Guide

Bit 2 controls tracing for every JavaScript bytecode being ex-
ecuted.

Exceptions

None.

A12.1.18. System.setGlobal()

Synopsis
Syst em set @ obal (nane)
Syst em set @ obal (nane, val ue)
Purpose
Store a string item in the global variables list.
Parameters
nane String
The name under which to store the string value.
val ue String
The string value to store. May contain binary data. The current
value associated with the given name, if any, is overwritten. If
the new value is nul | , empty or omitted, the current string
item with the specified name is removed.
Exceptions

* No argument specified
* Argument is an invalid name

* Insufficient internal memory available

A12.2. Callback functions
A122.1. systenEvent Li st ener

Purpose

Called when a system event occurs, if registered with Syst em addEvent Li stener () .

Parameters
event String
The new state caused by the event.

For event listeners registered for “bat t er y” events, this is
the value which would be retrieved with the get Bat t er yS-
tatus() method.

123

ProntoScript Developer's Guide

A.13. TCPSocket class

For event listeners registered for “netl i nk” events, this
is the value which would be retrieved with the get -
Net | i nkSt at us() method.

A network socket can be created to establish a TCP connection over the network.

Instance Properties

connect ed
onCl ose
onConnect

onDat a

onl CError

Class methods

set Socket Li mt ()

Instance methods
connect ()

cl ose()

wite()

read()

Check the connection state of the socket.
Define the asynchronous socket close callback function.
Define the asynchronous socket connect callback function.

Define the function to be called when data is available on an
asynchronous socket.

Define the error referencer.

Adjust the maximum number of simultaneous TCP sockets.

Create a connection to a TCP server.
Terminate the connection.
Write data to a socket.

Read data from a socket.

A.13.1. TCPSocket class constructor

A13.1.1. TCPSocket()

Purpose

Create a new TCPSocket instance.

Parameters

Return

bl ocki ng

Bool ean

When true, creates a synchronous (blocking) socket, the
connect () and read() functions work synchronous, and
will block until the operation is finished.

If f al se (or omitted), asynchronous operation with callback
functions will be used.

124

ProntoScript Developer's Guide

A new TCPSocket class instance.

Exceptions

¢ Maximum active socket count reached
A.13.2. Instance properties

A13.2.1.t cpsocket .connected

Purpose
Check the connection state of the socket.

Read/Write : R

Value : Boolean
t r ue if connected, f al se if not.
Additional info

Set to t r ue as soon as the connection is established.
A13.22. t cpsocket .onClose

Purpose
Define the asynchronous socket close callback function.

Read/Write : RW

Value : onTCPSocketCloseCallback
Set to nul | if no notification is required.
Additional info

Used to detect the end of a network transfer or that the socket is closed by the destination.
A13.2.3.t cpsocket .onConnect

Purpose
Define the asynchronous socket connect callback function.

Read/Write : RW

Value : onTCPSocketConnectCallback
The function to be called.
Additional info

This function is called as soon as the connection is established and the socket was created as asyn-
chronous.

125

ProntoScript Developer's Guide

A13.24.t cpsocket .onData

Purpose

Define the function to be called when data is available on an asynchronous socket.

Read/Write : RW

Value : onTCPSocketDataCallback
The function to be called.
Additional info

When the onDat a value is triggered, use the r ead() function to get the data.
A13.2.5.t cpsocket .onlOFError

Purpose

Define the error referencer.

Read/Write : RW

Value : onTCPSocketErrorCallback
The function to be called.
Additional info

This callback function is called when the network layer reports an error. The error is passed as an
argument to this function.

A.13.3. Class methods

A13.3.1. TCPSocket.setSocketLimit()
Synopsis

TCPSocket . set Socket Limt(limt)
Purpose

Adjust the maximum number of simultaneous TCP sockets.
Parameters

[imt I nt eger

New limit.

Exceptions

None.

126

ProntoScript Developer's Guide

Additional info

By default, the number of simultaneous TCP sockets available in ProntoScript is limited to 32. Using
this method, this limit can be increased up to 64.

A.13.4. Callback functions

The callback functions will be called in the scope of the socket object instance. For example, in the
onConnect callback function,awr it €() can be done immediately without having to look up the
connected socket instance.

The prototypes of the callback functions are as follows:

A13.41. onTCPSocket Cl oseCal | back

Purpose
Called when the socket is closed successfully.
Parameters

None.

A134.2. onTCPSocket Connect Cal | back

Purpose

Called when a connect () operation completes successfully on an asynchronous socket.
Parameters

None.
Additional info

When the connect () is successful, the read() and wi t e() operations can be used on the
socket.

A.13.4.3. onTCPSocket Dat aCal | back

Purpose

Called when data is received on an asynchronous socket.
Parameters

None.
Additional info

The callback function can retrieve the received data using the r ead() function.
A1344. onTCPSocket Error Cal | back

Purpose

Called when an error occurs on an asynchronous socket.

127

ProntoScript Developer's Guide

Parameters
e Panel Error

An instance of the Panel Err or class for the error.

Additional info

The error string can be retrieved by casting e to a string, e.g. System print (e);

A.13.5. Instance methods
A135.1.t cpsocket .connect()

Synopsis
t cpsocket . connect (i p, port, ti meout)
Purpose
Create a connection to a TCP server.
Parameters
ip String
IP address or host name to connect to.
port I nt eger
Port number to connect to.
ti meout I nt eger
Maximum time in milliseconds to establish the asynchronous
connection.
Exceptions

* Not enough arguments specified

* Argument is not a string

* Argument is not an integer

* Argument is not a positive integer number
* Failed to connect

* Failed

Additional info

For a synchronous socket, the function returns when the connection is established, or when the
connection fails.

For an asynchronous socket, it returns immediately and the onConnect function is called as soon
as the connection is effective. A connection failure will be reported by a call to the onl CErr or
function.

128

ProntoScript Developer's Guide

A135.2.t cpsocket .close()
Synopsis

t cpsocket. cl ose()
Purpose

Terminate the connection.
Parameters

None.
Exceptions

¢ Socket error

A1353.t cpsocket .write()
Synopsis

tcpsocket . write(s)

Purpose
Write data to a socket.
Parameters
S String
The data to be transmitted. May contain binary data.
Exceptions

* No enough argument specified
* Socket not ready
* Socket error

Additional info

The string data is queued for output on the network socket.

A13.54. t cpsocket .read()
Synopsis

t cpsocket . read(count)

t cpsocket . read(count, tineout)
Purpose

Read data from a socket.

129

ProntoScript Developer's Guide

Parameters
count I nt eger
Number of bytes to read.
ti meout I nt eger
Maximum time in milliseconds to wait for the data to arrive
for a synchronous socket. If omitted, returns immediately with
the currently available data.
Return
String

The available socket data in case of a synchronous socket. For asynchronous sockets, this function
returns immediately and the onDat a callback is called when the data is received.

Exceptions
* Argument is not an integer
» Argument is not a positive integer number
* Maximum blocking read length exceeded
* Insufficient internal memory available
* Socket error
* Failed

Additional info

The function reads the available data from the socket. It returns immediately with the read data as
result.

This function is typically used in the onDat a callback function to get the received data.

A.14. UDPSocket class

(available since application version 7.2.10)
A UDP network socket can be used to send and receive UDP datagrams over the network.

Instance Properties

onDat a Define the function to be called when an UDP packet is re-
ceived on the port specified in the constructor.

onl OError Define the error referencer.

Instance methods

cl ose() Unregisters the UDP socket from the control panel's TCP/IP
stack.
ncast Joi n() Joins a multicast group.

130

ProntoScript Developer's Guide

ntast Leave() Leaves a multicast group, if the socket was joined to it.
send() Send a UDP packet.
set Mcast TTL() Sets to time-to-live (TTL) value for subsequent multicast pack-

ets being sent through the socket.

A.14.1. UDPSocket class constructor
A14.1.1. UDPSocket()

Purpose
Create a new UDPSocket instance.
Parameters
port I nt eger
Indicates the local port, used as the originating port for out-
bound UDP packets, and the port to listen for inbound UDP
packets.
If this parameter is not specified, the socket will not listen for
inbound UDP packets, and UDP packets sent using the socket
may be sent using any UDP source port available on the con-
trol panel. In this case, multiple packets sent through the same
socket may be sent using different source ports.
Return
A new UDPSocket class instance.
Exceptions

* Argument is not a positive integer number
* Argument out of range

* Socket error
A.14.2. Instance properties
A14.2.1. udpsocket .onData

Purpose

Define the function to be called when an UDP packet is received on the port specified in the con-
structor.

Read/Write : RW

Value : onUDPSocketDataCallback

The function to be called.

131

ProntoScript Developer's Guide

Additional info

If the UDPSocket was constructed without specifying a port, no packets will be received.

A14.2.2. udpsocket .onlOError

Purpose

Define the error referencer.

Read/Write : RW

Value : onUDPSocketErrorCallback
The function to be called.

Additional info

This callback function is called when the network layer reports an error. The error is passed as an
argument to this function.

A.14.3. Callback functions

The callback functions will be called in the scope of the socket object instance.

The prototypes of the callback functions are as follows:

A14.3.1. onUDPSocket Dat aCal | back

Purpose

Called when data is received on an asynchronous socket.

Parameters
dat a String
The payload of the received UDP packet.
addr ess String
The source IP address of the UDP packet.
port | nt eger

The source port of the UDP packet.
Additional info

For large inbound UDP datagrams, only the first 4 kilobyte is available; the rest of the datagram is
discarded.

A.14.3.2. onUDPSocket Error Cal | back

Purpose

Called when an error occurs on an asynchronous socket.

132

ProntoScript Developer's Guide

Parameters
e Panel Error
An instance of the Panel Err or class for the error.

Additional info

The error string can be retrieved by casting e to a string, for example: Syst em pri nt (e);

A.14.4. Instance methods

A14.4.1. udpsocket .close()
Synopsis
udpsocket . cl ose()
Purpose
Unregisters the UDP socket from the control panel's TCP/IP stack.
Parameters
None.
Exceptions
» Socket error
Additional info

Even though UDP is connectionless, the cl 0se() method frees up the UDP socket, allowing another
socket to use the local UDP port.

A14.4.2. udpsocket .mcastjoin()

(available since application version 7.2.12)
Synopsis

udpsocket . ntast Joi n(addr ess)
Purpose

Joins a multicast group.

Parameters
addr ess String
The IP address of the multicast group to join.
Exceptions

* No argument specified

* Argument out of range

133

ProntoScript Developer's Guide

* Argument is not a string
* Argument is not an IP address

¢ Socket error

A14.4.3. udpsocket .mcastLeave()

(available since application version 7.2.12)
Synopsis

udpsocket . ntast Leave(addr ess)
Purpose

Leaves a multicast group, if the socket was joined to it.

Parameters
addr ess String
The IP address of the multicast group to leave.
Exceptions

* No argument specified

* Argument out of range

* Argument is not a string

* Argument is not an IP address

¢ Socket error

A14.4.4. udpsocket .send()

Synopsis

udpsocket . send(s, host, port)
Purpose

Send a UDP packet.
Parameters

S String

The data to be transmitted. May contain binary data.
host String

The destination IP address of the packet.
port I nt eger

The destination UDP port of the packet.

134

ProntoScript Developer's Guide

Exceptions
* Not enough arguments specified
* Argument out of range
* Argument is not a string
* Argument is not an IP address
* Argument is not a positive integer number
* UDP socket busy

¢ Socket error

A14.45. udpsocket .setMcastTTL()

(available since application version 7.2.12)

Synopsis
udpsocket . set Mcast TTL(tt1)
Purpose
Sets to time-to-live (TTL) value for subsequent multicast packets being sent through the socket.
On multi-subnet networks with routers set up for multicast routing, this can be used to determine
how far a multicast packet is being transmitted through the network.
Parameters
ttl I nt eger
Typical TTL values are: O (restricted to the origin host), 1 (local
subnet), 32 (local site), 64 (local region), 128 (local continent)
and 255 (unrestricted).
If not set, multicast UDP packets will be sent using a TTL value
of 1 (local subnet only).
Exceptions

* No argument specified
* Argument is not a positive integer number
* Argument out of range

¢ Socket error

Additional info

Note

Most internet service providers do not support multicast, causing this functionality to
only be relevant on larger multi-subnet local networks.

135

ProntoScript Developer's Guide

A.15. Widget class

This represents a button or panel in the configuration file or on the screen. This also includes firm
keys and hard keys, as well as reusable macros. If the widget is on the current page, the data members
will reflect the actual widget properties and they can be adjusted. Otherwise the data members are
read-only and reflect the properties as stored in configuration file. The change will be persistent for
as long as the activity is active. When changing to another activity and back the widget properties
will be reloaded from the configuration file.

Note

During script execution the screen is not updated, so any changes to widget prop-
erties will become visible after the script has finished. Refer to Section A.6.2.6,
“GUl.updateScreen()” to force intermediate screen updates.

Because the W dget class is used to represent five object types: Button, Firm key, Hard key, Panel
and Macro, not all properties are meaningful in all cases. In each property description below it is
stated for which object type it is applicable.

Note

During the execution of the activity script the current page is not yet created. If you
want to manipulate widget properties before they are displayed, please do so in the

page script instead.

Instance Properties

bgcol or
bol d

col or

f ont
fontSi ze
hal i gn
hei ght

italic

| abel
| eft

onHol d

onHol dI nt er val

onhbve

onPr ess

Sets the background color to use if no background image is set.
Controls if the widget's label should rendered bold or not.
Sets the foreground (text) color to use.

Sets the font to use.

Sets the font size.

Controls the horizontal text alignment.

Determines the vertical size of the widget.

Controls if the widget's label should rendered italic (oblique)
or not.

The text displayed in the widget.
Determines the horizontal position of the widget.

Contains the function to be called while a button is kept
pressed.

Define the button onHold repeat interval time. The default
value is 1000, which means that when an onHol d function is
defined, it is called every second.

Define the function to be executed when the touch position
changes while a button is pressed.

Define the function to be executed at the next button press.

136

ProntoScript Developer's Guide

onRel ease

st ret chl mage
tag

top

t ranspar ent

valign

visible

wi dt h

Instance methods
execut eActi ons()
get BgCol or ()

get Col or ()

get | mage()

get Label Si ze()

renove()

schedul eActi ons()
set BgCol or ()

set Col or ()

set | mage()

Define the function to be executed at the next button release.
Allows stretching the widget image to fit the widget size.

Get the tag of the widget.

Determines the vertical position of the widget.

Controls the transparency of the background if no background
image is set.

Controls the vertical text alignment.
Allows hiding or showing a widget on the screen.

Determines the horizontal size of the widget.

Executes the action list of the widget.

Get the background color used for a widget.
Get the text color used for a widget.
Retrieve the image attached to the widget.

Obtains the dimensions needed to render a given text as the
label of a widget, using the widget's current text rendering set-
tings.

Removes a widget from the current user interface.
Schedules the execution of the action list of the widget.
Set the background color to use for a widget.

Set the text color to use for a widget.

Change the image of the widget for a specific state (pressed
or released).

A.15.1. Instance properties
A151.1.w dget .bgcolor

(available since application version 7.1.2)

Purpose
Sets the background color to use if no background image is set.

Read/Write : RW

Value : Integer

Range: 0 to 16777215

137

ProntoScript Developer's Guide

24-bit value (8 bits blue, 8 bits green and 8 bits red); 0xff0000 is blue, 0x00ff00 green, and 0x0000ff
is red.

Applicable for

Button, Firm key, Panel

A15.1.2. W dget .bold

(available since application version 7.2.3)

Purpose

Controls if the widget's label should rendered bold or not.

Read/Write : RW

Value : Boolean
true (bold) or f al se (normal font weight)
Applicable for

Button, Panel

A.15.1.3. wi dget .color

(available since application version 7.1.2)

Purpose

Sets the foreground (text) color to use.

Read/Write : RW

Value : Integer
Range: 0 to 16777215

24-bit value (8 bits blue, 8 bits green and 8 bits red); 0xff0000 is blue, 0x00ff00 green, and 0x0000ff
is red.

Applicable for
Button, Firm key, Panel

A15.1.4. wi dget .font

(available since application version 7.2.11)

Purpose
Sets the font to use.

Read/Write : RW

138

ProntoScript Developer's Guide

Value : String

File name of the font (for example, “I aCart ooneri e. ttf”) - not the font name.
Applicable for

Button, Panel
Additional info

For the control panel to be able to render a widget using the requested font, the font must be present
in the configuration of the control panel. If the font is not present, the default font will be used.

To force a font to be included in the control panel's configuration file, include a panel or button using
that font in one of the pages of the configuration, possibly in a hidden page.

A15.1.5. wi dget .fontSize

(available since application version 7.2.11)

Purpose
Sets the font size.

Read/Write : RW
Value : Integer

Applicable for

Button, Panel

A15.1.6.w dget .halign

(available since application version 7.2.3)

Purpose
Controls the horizontal text alignment.

Read/Write : RW

Value : String

Possible valuesare "l ef t"," center" and "ri ght

Applicable for

Button, Firm key, Panel
A151.7. W dget .height

Purpose

Determines the vertical size of the widget.

139

ProntoScript Developer's Guide

Read/Write : RW

Value : Integer

Range: 1 to 65535

Applicable for
Button, Firm key, Panel

Additional info
When the st r et chl mage property of the widget is not set to true, next rules apply:
* If the size is smaller than the height of the displayed image, the image will be clipped.

* If the size is bigger, the remaining space will be transparent.

A15.1.8. W dget .italic

(available since application version 7.2.3)

Purpose

Controls if the widget's label should rendered italic (oblique) or not.

Read/Write : RW

Value : Boolean
t r ue (oblique) or f al se (normal font slanting)
Applicable for

Button, Panel
A1519.wi dget Jabel

Purpose
The text displayed in the widget.

Read/Write : RW

Value : String
The string can be of any length but the visible part will depend on the dimensions of the widget.
May not contain binary data. Use the newline character sequence "\n' to generate a text spanning
multiple lines.

Applicable for

Button, Firm key, Panel

A151.10. Wi dget left

140

ProntoScript Developer's Guide

Purpose

Determines the horizontal position of the widget.

Read/Write : RW

Value : Integer

Range: -32768 to 32767

Applicable for
Button, Firm key, Panel

Additional info

This member stores the number of pixels between the left of the widget and the left side of the
screen. Negative values are allowed to place the widget (partly or completely) outside of the screen.

A151.11. wi dget .onHold

Purpose

Contains the function to be called while a button is kept pressed.

Read/Write : RW

Value : Function

A valid function, or nul | if no button hold behavior is desired (anymore).

Applicable for

Button, Firm key, Hard key
Additional info

The callback function will be scheduled repeatedly every onHoldInterval milliseconds after the button
is pressed, until the button is released.

Note

When a button is pressed for more than 30 seconds, the control panel will automati-
cally release the button. This is to prevent unwanted behaviour because of an object
positioned on top of the control panel.

Example

Example A.21. wi dget .onHold

/1 Button script showing a counter from1l to 10 in the
/1 button | abel while the button is pressed:

var counter = 1,

onHold = function() {

| abel = count ++;

if (count > 10) { onHold = null; }

iE

141

ProntoScript Developer's Guide

A15.1.12. w dget .onHoldInterval

Purpose

Define the button onHold repeat interval time. The default value is 1000, which means that when an
onHol d function is defined, it is called every second.

Read/Write : RW

Value : Integer
Range: 0 to 32767

The interval time in milliseconds. If set to 0, the onHold function will not be called anymore.

Applicable for

Button, Firm key, Hard key

Example

Example A.22. W dget .onHoldInterval

/1 Button script showing a increasing speed counter:
var count, limt;
count 1;
limt 10;
onHold = function() {
| abel = count ++;
if (count === 1limt) {
onHol dl nterval /= 2;
limt *= 2;

}

b
A15.1.13. w dget .onMove
(available since application version 7.2.7)

Purpose

Define the function to be executed when the touch position changes while a button is pressed.

Read/Write : RW

Value : onMoveCallback

A valid function, or nul | if no button move behavior is desired.
Applicable for

Button, Firm key, Hard key
Additional info

The function will be called only while the button is pressed, with the relative coordinates of the touch
position as arguments.

142

ProntoScript Developer's Guide

A15.1.14. w dget .onPress

(available since application version 7.2.7)

Purpose
Define the function to be executed at the next button press.

Read/Write : RW

Value : onPressCallback

A valid function, or nul | if no button press behavior is desired.
Applicable for

Button, Firm key, Hard key
Additional info

The function will be called once when the button is pressed, with the relative coordinates of the
press as arguments.

A151.15. wi dget .onRelease

Purpose

Define the function to be executed at the next button release.

Read/Write : RW

Value : Function

A valid function, or nul | if no button release behavior is desired.
Applicable for

Button, Firm key, Hard key
Additional info

The function will be called once when the button is released.

Example

Example A.23. wi dget .onRelease

Example of a button script that changes the button label when the button is released:

| abel = "Pressed";
onRel ease = function() { |abel = "Rel eased"; };

A151.16. Wi dget .stretchimage

143

ProntoScript Developer's Guide

(available since application version 4.0.5)

Purpose
Allows stretching the widget image to fit the widget size.

Read/Write : RW

Value : Boolean
t r ue (stretch) or f al se (don’t stretch)
Applicable for
Button, Firm key, Panel
Additional info
When the st r et chl mage property is set, it is applicable for all images that are set in the widget.

For the button, both the pressed and the released state image are set with the st r et chl nage
property.

The image is only stretched when it is drawn. This means that when you copy the image, you always
get the image in the original size.

A151.17.wi dget tag

Purpose
Get the tag of the widget.

Read/Write : R

Value : String

String containing the tag.
Applicable for

Button, Firm key, Hard key, Panel, Macro
Additional info

The tag is used to find the widget in the list of visible widgets or in the configuration file.
A151.18.wi dget top

Purpose

Determines the vertical position of the widget.

Read/Write : RW

144

ProntoScript Developer's Guide

Value : Integer

Range: -32768 to 32767

Applicable for
Button, Firm key, Panel
Additional info

The top member contains the number of pixels between the top of the widget and the top of the
screen. Negative values are allowed to place the widget (partly or completely) outside of the screen.

A151.19.wi dget .transparent
(available since application version 7.1.12)

Purpose

Controls the transparency of the background if no background image is set.

Read/Write : RW

Value : Boolean

t r ue (transparent) or f al se (opaque)
Applicable for

Panel

Additional info

6 Note
This property is only supported for panels; setting this property to t r ue for a button,

will cause that button to not accept touch screen presses (allowing a button behind
that button to be pressed).

A15.1.20. w dget .valign

(available since application version 7.2.3)

Purpose

Controls the vertical text alignment.

Read/Write : RW

Value : String

Possible values are "t op", " cent er" and "bott oni'.
Applicable for

Button, Firm key, Panel

145

ProntoScript Developer's Guide

A15.1.21. w dget .visible

Purpose
Allows hiding or showing a widget on the screen.

Read/Write : RW

Value : Boolean

t rue (visible) or f al se (not visible)
Applicable for

Button, Firm key, Panel

A15.1.22. wi dget .width

Purpose

Determines the horizontal size of the widget.

Read/Write : RW

Value : Integer

Range: 1 to 65535

Applicable for
Button, Firm key, Panel

Additional info
When the st r et chl mage property of the widget is not set to true, next rules apply:
* If the size is smaller than the width of the displayed image, the image will be clipped.

* If the size is bigger, the remaining space will be transparent.

A.15.2. Callback functions

The callback functions will be called in the scope of the widget object instance.

The prototypes of the callback functions are as follows:

A.152.1. onMoveCal | back

Purpose
Called when a button is pressed and the touch position changes.
Parameters

X | nt eger

146

ProntoScript Developer's Guide

X-axis coordinate of the press location, relative to the top-left
corner of the widget.

y I nt eger

Y-axis coordinate of the press location, relative to the top-left
corner of the widget.

A.15.2.2. onPressCal | back

Purpose
Called when a button is pressed.
Parameters
X I nt eger

X-axis coordinate of the press location, relative to the top-left
corner of the widget.

y I nt eger

Y-axis coordinate of the press location, relative to the top-left
corner of the widget.

A.15.3. Instance methods

A15.3.1. W dget .executeActions()

Synopsis

wi dget . execut eActi ons()
Purpose

Executes the action list of the widget.
Parameters

None.
Exceptions

» Busy playing actions
* ActionList error
Applicable for
Button, Firm key, Hard key, Macro

Additional info

This is a blocking function, so script execution will only continue after the action list has been com-
pletely finished. If the action list contains a jump to another activity, the script will be aborted.

147

ProntoScript Developer's Guide

6 Note
execut eAct i ons will fail if another action list is being played already. When execut-

ing an activity or page script this is mostly the case. To work around this problem, use
schedul eActi ons() to execute the actions a little later; when the activity switch
or page jump is finished.

A15.3.2. W dget .getBgColor()

(available since application version 7.2.17)
Synopsis

wi dget . get BgCol or ()

wi dget . get BgCol or (i ndex)
Purpose

Get the background color used for a widget.

Parameters
i ndex I nt eger
The color index. A panel can have one background color (index
0) and a button or firm key can have 2 background colors: one
for the released state (index 0) and one for the pressed state
(index 1). If index is omitted, 0 is assumed.
Return
I nt eger

24-bit value (8 bits blue, 8 bits green and 8 bits red); 0xff0000 is blue, 0x00ff00 green, and 0x0000ff
is red.

Exceptions
» Color index should be an integer number
Applicable for

Button, Firm key, Panel

A15.3.3. W dget .getColor()

(available since application version 7.2.17)
Synopsis

wi dget . get Col or ()

wi dget . get Col or (i ndex)
Purpose

Get the text color used for a widget.

148

ProntoScript Developer's Guide

Parameters
i ndex I nt eger
The color index. A panel can have one text color (index 0)
and a button or firm key can have 2 text colors: one for the
released state (index 0) and one for the pressed state (index
1). If index is omitted, 0 is assumed.
Return
I nt eger

24-bit value (8 bits blue, 8 bits green and 8 bits red); 0xff0000 is blue, 0x00ff00 green, and 0x0000ff
is red.

Exceptions
* Color index should be an integer number
Applicable for

Button, Firm key, Panel

A1534. W dget .getimage()

Synopsis
wi dget . get | nage()
wi dget . get | mage(i ndex)
Purpose
Retrieve the image attached to the widget.
Parameters
i ndex I nt eger
The image index. A panel can have only one image (index 0) and
a button or firm key can have 2 images: one for the released
state (index 0) and one for the pressed state (index 1). If index
is omitted, O is assumed.
Return
| mge
An instance of the | mage class representing the specified image of the widget.
Exceptions

* Image index should be an integer number
* Index is out of range
Applicable for

Button, Firm key, Panel

149

ProntoScript Developer's Guide

Example

Example A.24. Wi dget .getimage()

Get an image from a panel in the gallery page of the current activity:

var img = CF.widget ("I MAGEL23", "GALLERY").get|nage();
A1535. W dget .getlLabelSize()
(available since application version 7.2.13)
Synopsis

wi dget . get Label Si ze(t ext)

Purpose

Obtains the dimensions needed to render a given text as the label of a widget, using the widget's
current text rendering settings.

Parameters

t ext String

The text for which to calculate the required dimensions.

Return

Array

An array containing 2 integers; the width and height which would be needed to render the label

completely.
Exceptions

* No argument specified

* Argument is not a string

Applicable for

Button, Firm key, Panel

Example

Example A.25. wi dget .getLabelSize()

A function to set a widget's label, and resize it to completely fit the label:

function setlLabel (aWdget, alLabel) {
var size;
si ze = aWdget. get Label Si ze(alLabel);
aW dget . | abel alLabel ;
aWdget.width = size[0];
aW dget . hei ght = size[1];

}
A15.3.6. W dget .remove()

150

ProntoScript Developer's Guide

(available since application version 7.2.15)
Synopsis
wi dget . renmove()
Purpose
Removes a widget from the current user interface.
Parameters
None.
Exceptions
None.
Applicable for
Button, Firm Key, Panel
Additional info

This method is primally useful for dynamically created widgets (created with addButton() or
addPanel ()), as it frees up the resources used by the dynamically created widget.

For widgets defined in the configuration file, the effect of this method is similar to setting the Vi S-
i bl e property tof al se.

A15.3.7. W dget .scheduleActions()

(available since application version 7.2.12)
Synopsis

wi dget . schedul eActi ons()
Purpose

Schedules the execution of the action list of the widget.
Parameters

None.
Exceptions

* Busy playing actions
Applicable for

Button, Firm key, Hard key, Macro
Additional info

Contrary to the execut eAct i ons() method, this method is not blocking. If another action list is
being played already, the scheduled action list will be executed after the currently playing action list.

151

ProntoScript Developer's Guide

A15.3.8. W dget .setBgColor()

(available since application version 7.2.17)
Synopsis

wi dget . set BgCol or (col or)

wi dget . set BgCol or (col or, i ndex)
Purpose

Set the background color to use for a widget.
Parameters

col or I nt eger

24-bit value (8 bits blue, 8 bits green and 8 bits red); 0xff0000
is blue, 0x00ff00 green, and 0x0000ff is red.

i ndex I nt eger
The color index. A panel can have one background color (index
0) and a button or firm key can have 2 background colors: one

for the released state (index 0) and one for the pressed state
(index 1). If index is omitted, 0 is assumed.

Exceptions
* No argument specified
* Argument is not a valid color
* Color index should be an integer number
Applicable for
Button, Firm key, Panel
Additional info
Contrary to the bgcol or property, which relates to the current background color of a widget, this
method allows setting the colors to which the background color will be set after a state transition

(pressing or releasing a button).

For panels, this makes no difference, since those only have a single state.
A15.39.w dget .setColor()
(available since application version 7.2.17)
Synopsis

wi dget . set Col or (col or)

wi dget . set Col or (col or, i ndex)

152

ProntoScript Developer's Guide

Purpose
Set the text color to use for a widget.
Parameters
col or I nt eger
24-bit value (8 bits blue, 8 bits green and 8 bits red); 0xff0000
is blue, 0x00ff00 green, and 0x0000ff is red.
i ndex I nt eger
The color index. A panel can have one text color (index 0)
and a button or firm key can have 2 text colors: one for the
released state (index 0) and one for the pressed state (index
1). If index is omitted, 0 is assumed.
Exceptions

* Color index should be an integer number

* No argument specified

* Argument is not a valid color
Applicable for

Button, Firm key, Panel

Additional info

Contrary to the col or property, which relates to the current text color of a widget, this method
allows setting the colors to which the text color will be set after a state transition (pressing or
releasing a button).

For panels, this makes no difference, since those only have a single state.
A15.3.10. w dget setimage()
Synopsis

wi dget . set | nage(i ng)

wi dget . set | nage(i ng, i ndex)
Purpose

Change the image of the widget for a specific state (pressed or released).
Parameters

i mg | mage

The image to be assigned to the widget state.
i ndex | nt eger

The image index. A panel can have one image (index 0) and
a button or firm key can have 2 images: one for the released

153

ProntoScript Developer's Guide

state (index 0) and one for the pressed state (index 1). If index
is omitted, 0 is assumed.

Exceptions

* No enough argument specified
* Argument is not an image.

* Index is out of range.

Applicable for

Button, Firm key, Panel

Additional info

Example

If the size of the new image is bigger than the value of the height and width properties, the image
will be clipped. If the size is smaller, the space outside of the image will be transparent (unless the
stret chl mage property of the widget is set to t r ue).

Example A.26. w dget .setimage()
Example of button showing an animation from the gallery page of the current activity.

It loads the images from the panels tagged ANl ML_0, ANl ML_1 ... ANl ML_9 successively:

var count = 0;

onHol dl nterval = 100;

onHol d = function()

{
set | mage(CF. wi dget ("ANI ML_" + (count % 10), "GALLERY").getlnmage());
count ++;

h

154

ProntoScript Developer's Guide

Appendix B. HttpLibrary AP

This appendix documents the APl of the com phi | i ps. Ht t pLi brary. j s library, included in
the ProntoEdit Professional 2.X installation.

This library implements an interface for HTTP requests. It implements basic HTTP/1.0 support, with
support for the UTF-8, ISO-8859-1 and Windows codepage 1252 text encodings.

B.1. getHTTP() static method

Purpose

Obtain text data from a HTTP server.

Parameters
url String
The URL to retrieve.
cal | back Functi on
The function to invoke when the text has been retrieved.
Exceptions
None.

Additional info

The text data will be decoded according to the character encoding specified in the HTTP response
headers, if that encoding is UTF-8, Windows codepage 1252 (Western European) or ISO-8859-15.
Other encodings are not supported; for those encodings, the raw binary response will be passed to
the callback function.

Example

Example B.1. getHTTP() static method

function parseStatus(abDat a)

{
}

var httpLib = com philips. HttpLibrary;
httpLi b. get HTTP("http://192. 168. 1. 12/ cgi - bi n/ st at us", parseStatus);

B.2. getHT TPBinary() static method

System print (aDat a) ;

Purpose

Obtain binary data from a HTTP server.
Parameters

url String

155

ProntoScript Developer's Guide

The URL to retrieve.
cal | back Functi on

The function to invoke when the URL has been retrieved, with
the reponse data passed as an argument to that function.

Exceptions

None.

Additional info

Contrary to the get HTTP() method, get HTTPBi nar y() will not attempt to decode text from
the binary data.

B.3. getHT TPXML() static method

Purpose

Obtain XML data from a HTTP server.

Parameters
url String
The URL to retrieve.
cal | back Functi on
The function to invoke when the response has been retrieved,
with the reponse data passed as an argument to that function,
in the form of an E4X XML object.
Exceptions
None.
Example

Example B.2. getHTTPXML() static method

var httpLib = com philips. HtpLibrary,

entry,

url;
entry = nusicDirectoryH story[nusicDirectoryHi story.length - 1];
url = "http://192.168.1.10" +

"/ xbntHt t p?conmand=Cet Medi aLocati on(nusic;" +
encodeURl Conponent (entry) +

httpLi b. get HTTPXM_(url, function (aXm Data) {
var item
for (itemin aXm Data.xm .item
/1 do what you need to do

1)

156

ProntoScript Developer's Guide

B.4. HttpRequest class

This class represents a single HTTP request. It is similar to the XMLHttpRequest class available in

Internet Explorer and Firefox.

Instance Properties

onconnect

onr eadyst at echange

readySt at e

responseBi nary

responseText

responseXm
status
st at usText

wi t hCredenti al s

Instance methods

abort ()

get Al | ResponseHead-
ers()

get ResponseHeader ()
open()

overri deM meType()
send()

sendChunk()

set Request Header ()

Define the function to invoke when the TCP connection to
the HTTP server is established, and the HTTP request headers
have been sent.

Define the function to invoke whenever the r eady St at e
attribute changes.

The state of the request.

The response to the request, as a String containing the raw
binary data.

The response to the request, as a String containing the decod-
ed text.

The response to the request, as an E4X XML object.
The status of the response to the request.
The response string of the response.

Unimplemented property (included for compatibility).

Abort the request.

Return all response headers.

Return a specific response header.
Initialize the request.

Override the MIME type of the response.
Send the HTTP request the the server.

Send a chunk of data. Must be called after the onconnect
callback has been called.

Set the value of a HTTP request header.

B.4.1. HttpRequest class constructor
B.4.1.1. HttpRequest()

Purpose

Create a new HttpRequest instance.

157

ProntoScript Developer's Guide

Parameters
None.
Return
Ht t pRequest

A new HttpRequest class instance.
Exceptions

None.

B.4.2. Instance properties

B.4.2.1. ht t pr equest .onconnect

Purpose

Define the function to invoke when the TCP connection to the HTTP server is established, and the
HTTP request headers have been sent.

Read/Write : R

Value : onConnectCallback

The function to be called.
B.42.2. ht t pr equest .onreadystatechange

Purpose
Define the function to invoke whenever the r eady St at e attribute changes.

Read/Write : RW

Value : onReadyStateChangeCallback
The function to be called.
Additional info
open() must have been called before setting onr eadyst at echange

B.4.2.3. ht t pr equest .readyState

Purpose
The state of the request.

Read/Write : R

Value : Integer

158

ProntoScript Developer's Guide

Additional info
The state of the request can have the following values:

0 (UNI NI TI ALI ZED) open() has not been called yet.

1 (LOADI NG send() has not been called yet.

2 (LOADED) send() has been called; headers and status are available.
3 (I NTERACTI VE) Downloading; r esponseBi nar y holds partial data.

4 (COMPLETED) The operation is complete.

B.4.2.4. ht t pr equest .responseBinary

Purpose
The response to the request, as a String containing the raw binary data.

Read/Write : R

Value : String

B.4.2.5. ht t pr equest .responseText

Purpose

The response to the request, as a String containing the decoded text.

Read/Write : R

Value : String

B.4.2.6. ht t pr equest .responseXML

Purpose
The response to the request, as an E4X XML object.

Read/Write : R

Value : XML
An E4X XML object.
B.4.2.7. ht t pr equest status

Purpose

The status of the response to the request.

Read/Write : R

159

ProntoScript Developer's Guide

Value : Integer

The HTTP result code of the response (for example, 200 for a succesful request), or -1 if no HTTP
response has been received yet.

B.4.2.8. ht t pr equest statusText

Purpose
The response string of the response.

Read/Write : R

Value : String

The literal response string of the HTTP response (for example, “200 OK”).

B.4.29. ht t pr equest .withCredentials

Purpose

Unimplemented property (included for compatibility).

Read/Write : R

Value : Boolean

Always f al se.

B.4.3. Callback functions

The prototypes of the callback functions are listed below. In the callback functions, 't hi S' can be
used to refer to the scope of the actual HttpRequest object that is causing the callback.

R4.3.1. onConnect Cal | back

Purpose

Called when the TCP connection to the HTTP server is established, and the HTTP request headers
have been sent.

Parameters

None.

B.4.3.2. onReadySt at eChangeCal | back

Purpose
Called when when the r eady St at e attribute changes.
Parameters

None.

160

ProntoScript Developer's Guide

B.4.4. Instance methods

B.4.4.1. ht t pr equest .abort()
Synopsis
htt prequest . abort ()
Purpose
Abort the request.
Parameters
None.
Exceptions
None.
B.44.2. ht t pr equest .getAllResponseHeaders()
Synopsis
ht t prequest . get Al | ResponseHeader s()
Purpose
Return all response headers.
Parameters
None.
Return

nj ect

An object containing the HTTP response headers as properties.

Exceptions

None.
B.4.4.3. ht t pr equest .getResponseHeader()
Synopsis

ht t prequest . get ResponseHeader (header)
Purpose

Return a specific response header.
Parameters

header String

161

ProntoScript Developer's Guide

The response header to return.

Return
String
The value of the requested response header, or undef i ned if no such header is present in the
response.
Exceptions
None.

B.4.4.4. htt prequest .open()
Synopsis
ht t prequest . open(et hod, url, async)
ht t prequest . open(et hod, url, async, user)

ht t prequest . open(et hod, url, async, user, passwor d)

Purpose
Initialize the request.
Parameters
nmet hod String
The HTTP method to use for the request. Possible values in-
clude “GET”, “POST”, “HEAD”, “PUT”, “DELETE” and “OP-
TI ONS”. If not specified, “GET” is assumed.
url String
The URL to which to connect (for example, “http://
www. exanpl e. cont ™).
async Bool ean
Must always be t r ue as synchroneous operation is not imple-
mented.
user String
Ignored
passwor d String
Ignored
Exceptions

» HttpRequest not in UNINITIALIZED state

+ Synchroneous operation not supported

162

ProntoScript Developer's Guide

» Missing URL
* Invalid URL

* Invalid port

B.4.4.5. ht t pr equest .overrideMimeType()
Synopsis

htt prequest. overri deM nmeType(m neType)

Purpose
Override the MIME type of the response.
Parameters
m meType String
The MIME type to use to process the response, instead of the
MIME type returned by the server.
Exceptions

- overrideMimeType() must be called before send()
B.4.4.6. ht t pr equest .send()
Synopsis

ht t prequest . send()

ht t prequest . send(body)

Purpose
Send the HTTP request the the server.
Parameters
body String
Body data to include in the request (for example, with POST
requests).
Exceptions

* open() must be called before send()

* HttpRequest not in LOADING state
B.4.4.7. htt pr equest .sendChunk()
Synopsis

htt prequest . sendChunk(chunk)

163

ProntoScript Developer's Guide

Purpose

Send a chunk of data. Must be called after the onconnect callback has been called.

Parameters
chunk String
The data to be sent as a HTTP chunk.
Exceptions
None.

B.4.4.8. ht t pr equest .setRequestHeader()
Synopsis

ht t prequest . set Request Header (header, val ue)
Purpose

Set the value of a HTTP request header.

Parameters
header String
The header to set.
val ue String
The value of the header to set.
Exceptions

* open() must be called before setRequestHeader()

B.5. parseHttpUri() static method

Purpose

Parse a HTTP URI into its components, according to [RFC2616].

Parameters
URI String
The URI to parse.
Return
hj ect

An object with the various URI components as properties: host, port, r el Request URl and
fragment.

164

ProntoScript Developer's Guide

Exceptions

None.

Additional info

The following schematic details the different components, as returned by this method:

http://exanpl e. com 8042/ over/t here?name=f err et

_ [\ __ N\ /
I I I
host port r el Request URI fragnent
I I l_
/ \/ \/ \

http://ww. exanpl e. coni cgi - bi n/ t est. cgi ?qg=sear ch#nose
Example

Example B.3. parseHttpUri() static method

var httpLib = com philips. HttpLibrary,

uri,

conponent s;
uri = "http://exanpl e.conl subdi r ?q=abc& ang=en#1";
conmponents = httpLib. parseHttpUri (uri);
print (conponents. host) ; /1 "exanpl e. cont
print (conponents. port); /1 80
print(conmponents.rel RequestURl); // "/subdir?qg=abc& ang=en"
print (conmponents. fragment); ["#1"

B.6. parseUri() static method

Purpose

Parse a URI into its components, according to [RFC3986].

Parameters
URI String
The URI to parse.
Return
oj ect

An object with the various URI components as properties: scheme, aut hori ty pat h, query
and f ragnent .

Exceptions

None.

Additional info

The following schematic details the different components, as returned by this method:

165

ProntoScript Developer's Guide

foo://exanpl e. com 8042/ over/t here?name=f erret#nose

_/ \ /\ I\ IN__ 1

I I I I I
schene aut hority pat h query fragnent

I | __

I\ \

urn: exanpl e: ani mal : ferret: nose
Example

Example B.4. parseUri() static method

var httpLib = com philips. HtpLibrary,

uri,

conponent s;
uri = "http://exanpl e.conl subdi r ?q=abc& ang=en#1";
conponents = httpLib. parseUri (uri);
print (conponents. schene) ; /1 "http"
print (conponents. authority); // "exanple.cont
print (conmponents. pat h); [/ "/subdir"
print (conmponents. query); /1 "q=abc& ang=en"

print(conmponents. fragment); // "#1"

B./. proxyHost static property

Purpose

Host name of the HTTP proxy server to use.

Read/Write : RW

Value : String

The DNS hostname or the IP address of the proxy server to use.

Additional info

In order for the methods of HttpLibrary to connect to HTTP servers via a HTTP proxy server, both
pr oxyHost and pr oxyPort must be set.

B.8. proxyPort static property

Purpose

TCP port of the HTTP proxy server to use.

Read/Write : RW

Value : String

The TCP port of the HTTP proxy server to use. Set to -1 (the default), to connect HTTP servers
directly, instead of using a proxy server.

166

ProntoScript Developer's Guide

Example

Example B.5. proxyPort static property
var httpLib = com philips. HtpLibrary;
/1 Configure HtpLibrary to use proxy server http://proxy: 8080/

htt pLi b. proxyHost = "proxy";
htt pLi b. pr oxyPor t 8080;

/1 Retrieve an inmage from' nyserver', via the proxy server
htt pLi b. showHTTPI mage("http:// myserver/i mage. png", "I M5 PANEL");

B.9. showHT TPImage() static method

Purpose

Obtain an image from a HTTP server and render it in a widget.

Parameters
url String
The URL to retrieve.
wi dget oj ect
The widget (or the tag of a widget) on which to assign the
image, once it has been retrieved from the HTTP server.
Exceptions
None.
Example

Example B.6. showHTTPImage() static method

var httpLib = com philips. HtpLibrary;
htt pLi b. showHTTPI mage("http:// myserver/i mage. png", "I M5 PANEL");

167

ProntoScript Developer's Guide

168

ProntoScript Developer's Guide

Appendix C. Core JavaScript Classes
Description

The following sections list the available Core JavaScript classes in alphabetical order.

Note

This appendix lists all the Core JavaScript classes, methods and properties available in
ProntoScript.

Most of these are specified in the [ECMA262] and [ECMA357] standards, while some
are non-standard features provided by the script engine used in Pronto control panels.

C.1. Array class

The Array class implements the JavaScript array functionality.

Instance Properties

[ength Number of elements in the array.

Instance methods

concat () Append elements to the array.

every() Repeat the supplied function for every element of the array, as
long as the supplied function returns t r ue.

filter() Repeat the supplied function for every element of the array,
adding the elements for which this function returns t r ue to
a newly created array.

for Each() Repeats the supplied function for every element of the array.

i ndexOF () Index of the supplied item in the array.

join() Create a String by concatenating the elements of the array,

I ast | ndexOf ()

with an optional separator in between.

Index of the supplied item in the array, counting backwards
from the end of the array.

map() Repeat the supplied function for every element of the array,
returning an array with the results of each invocation.

push() Add an element to the end of the array.

pop() Return and remove the last element of the array.

reverse() Reverse the order of the elements in the array.

shift() Return and remove the first element of the array.

slice() Return a new array containing a range of elements of the array.

sone() Repeats the supplied function for every element of the array,

as long as the supplied function returns f al se.

169

ProntoScript Developer's Guide

sort () Sort the array elements.
splice() Add and delete array elements.
unshi ft() Add an element in the beginning of the array.

C.2. Boolean class

Representation of a boolean value.

C.3. Date class

Representation of a date/time instance.

Note

In ProntoScript, the time obtained with the Dat e is not the same as the user-visible
time.

The user-visible time, which can be obtained using the GUI . get Di spl ayTi nme()
and GUI . get Di spl ayDat e() methods, takes the time zone into account, and can
change backwards and forwards during script execution (using the settings mode of the
contol panel).

On the Pronto panel, the time obtained with the Core JavaScript Dat € class has no
relation with the user-visible time and always operates in UTC (Coordinated Universal
Time). This time is also not affected by time changes made by the end-user in settings
mode, and can thus be used for timers and timeouts, as it will only ever increase, never
decrease.

Class methods

now() Return the number of milliseconds since January 1st, 1970
(UTCQ), until the current JavaScript time.

parse() Convert a string representation of a date or time into the num-
ber of milliseconds since January 1st, 1970 (UTC),

urc() Return the number of milliseconds since January 1st, 1970
(UTCQ), of a date as specified by its components.

Instance methods

get Dat e() Return the day of the month (UTC) of the time which the
instance represents.

get Day() Return the day of the week (UTC) of the time which the in-
stance represents.

get Ful | Year () Return the year (UTC) of the time which the instance repre-
sents.

get Hour s() Return the hour of the day (in UTC) of the time which the

instance represents.

getM 1 1iseconds() Return the seconds component (in UTC) of the time which
the instance represents.

170

ProntoScript Developer's Guide

get M nut es()

get Mont h()

get Seconds()

get Ti me()

get Ti mezoneO f set ()

get UTCDat e()

get UTCDay()

get UTCFul | Year ()

get UTCHour s()

get UTCM I | i seconds()

get UTCM nut es()

get UTCMont h()

get UTCSeconds()

get Year ()

set Dat e()

set Ful | Year ()
set Hour s()
set M nut es()
set Mont h()

set Ti me()

set UTCDat e()
set UTCFul | Year ()
set UTCHour s()

set UTCM | | i seconds()

Return the minutes component (in UTC) of the time which
the instance represents.

Return the month of the year (UTC) of the time which the
instance represents.

Return the seconds component (in UTC) of the time which
the instance represents.

Return the number of milliseconds since January 1st, 1970
(UTCQ), of the time which the instance represents.

In ProntoScript, this always returns 0.

Return the day of the month (UTC) of the time which the
instance represents.

Return the day of the week (UTC) of the time which the in-
stance represents.

Return the year (UTC) of the time which the instance repre-
sents.

Return the hour of the day (in UTC) of the time which the
instance represents.

Return the seconds component (in UTC) of the time which
the instance represents.

Return the minutes component (in UTC) of the time which
the instance represents.

Return the month of the year (UTC) of the time which the
instance represents.

Return the seconds component (in UTC) of the time which
the instance represents.

Return the number of years since 1900 (UTC) of the time
which the instance represents.

Set the day of the month of the instance time (in UTC)
Set the year of the instance time (in UTC)

Set the hours of the day of the instance time (in UTC)
Set the minutes component of the instance time (in UTC)
Set the month of the year of the instance time (UTC)

Set the instance time using a specified number of milliseconds
since January 1st, 1970 (in UTC).

Set the day of the month of the instance time (in UTC)
Set the year of the instance time (in UTC)
Set the hours of the day of the instance time (in UTC)

Set the milliseconds component of the instance time (in UTC)

171

set UTCM nut es()
set UTCMVont h()

set UTCSeconds()
setM1liseconds()
set Seconds()

set Year ()

toDat eString()
t oLocal eDat eString()

t oLocal eFor mat ()

toLocal eString()

t oLocal eTi neString()
toTi meString()

t oUTCSt ri ng()

C.4. Error class

Generic error exception class.

Instance Properties
message
fil eName

| i neNunber

C.5. Bvalkrror class

ProntoScript Developer's Guide

Set the minutes component of the instance time (in UTC)
Set the month of the year of the instance time (in UTC)

Set the seconds component of the instance time (in UTC)
Set the milliseconds component of the instance time (in UTC)
Set the seconds component of the instance time (in UTC)

Set the year of the instance time, using the number of years
since 1900 (in UTC).

Return a string representation of the instance date, in UTC.
Return a string representation of the instance date, in UTC.

Return a string representation of the instance date or time (in
UTC), using a specified format.

Return a string representation of the instance date and time,
in UTC.

Return a string representation of the instance time, in UTC.
Return a string representation of the instance time, in UTC.

Return a string representation of the instance date and time,
in UTC.

Message describing the error.
String identifying the script.

Line number in the script

Error exception class for dynamic script evaluation failures.

C.6. Function class

The Function class implements the JavaScript functions, which are special kinds of objects in JavaScript.

Instance Properties

ar gunent s

arity

Predefined local array containing the arguments passed to the

function.

Number of formal parameters.

ProntoScript Developer's Guide

cal l er
 ength

nane

Instance methods

appl y()

call ()

C./. Math class

Function object invoking the function.
Actual number of arguments passed to the function.

Name of the function.

Invoke a function with an array containing the arguments to be
passed to the function.

Invoke a function in a specified object context.

The Mat h class provides various mathematical functions and constants.

Class Properties

E
LOXE

LOGLOE

LN2
LN10

Pl

SQRT2
SQRT1_2

Class methods
abs()
acos()
asi n()
atan()
atan2()
ceil ()
cos()

exp()
floor()

Iog()

Constant representing the base of the natural logarithm .
Constant representing the base-2 logarithm of the constant E.

Constant representing the base-10 logarithm of the constant
E

Constant representing the natural logarithm of 2.
Constant representing the natural logarithm of 10.

Mathematical constant T, the ratio of the circumference of a
circle to its diameter.

The square root of 2

The square root of 0.5

Calculate the absolute value

Arc cosine function

Arc sine function

Arc tangent function

Arc tangent function (2 variables)
Ceiling function

Cosine function

Base-E exponential function

Compute the largest integral value not greater than the argu-
ment.

Natural logarithmic function

173

ProntoScript Developer's Guide

max() Return the highest value out of the set of arguments.
m n() Return the lowest value out of the set of arguments.
pow() Power function

random() Compute a pseudo-random number

round() Mathematical rounding function

sin() Sine function

sqgrt () Square root function

tan() Tangent function

C.8. Namespace class

Represents an XML name space, which can be used to obtain elements from an E4X XM object
which are not in the document's default namespace.

Instance Properties
| abel Namespace prefix

uri Uniform Resource ldentifier of the namespace.

C.9. Number class

The Nunber class provides various functions and constants related to numbers.

Class Properties

NaN Representation of the special not-a-number value.
POSI TIVE_INFINI TY Representation of a positive infinity.

NEGATI VE_I NFINI TY Representation of a negative infinity.
MAX_VALUE The largest representable number.

M N_VALUE The smallest representable number.

Instance methods
toLocal eString() Return a string representation of the number instance.

t oFi xed() Return a string in with a fixed-point representation of the num-
ber instance.

t oExponenti al () Return a string with the exponential (scientific) representation
of the number instance.

t oPreci si on() Return a string representation of the number instance, with a
specified precision.

C.10. Object class

174

ProntoScript Developer's Guide

Base object class, from which all other classes and objects are derived.

Instance Properties

__count__ Number of properties of the object
__parent __ Object context
__proto__ Object prototype at the time of the object instantiation.

Instance methods

hasOanProperty() Test if a property is defined directly in the object, instead of
in the prototype chain.

i sPrototypeC () Test if an object is in the prototype chain of the object instance.

propertyl sEnumner abl e() Test if a property is an enumerable property of the object.

toLocal eString() Return a string representation of the object
t oSour ce() Return a JavaScript source-code representation of the object
toString() Return a string representation of the object
unwat ch() Stop calling the function set with wat ch, whenever a given

properties' value changes.

val uedr () Return the primitive value of an object, or the object itself it
the object cannot be converted to a primitive value.

wat ch() Specify a function to be called whenever a given properties'
value changes.

__defineGetter__ () Specify a function to use when retrieving the value of a given
property.

__defineSetter__() Specify a function to use when setting the value of a given prop-
erty.

__lookupGetter__ () Obtain the function set with __def i neGetter .

__lookupSetter__ () Obtain the function set with __def i neSetter .

C.11. OName class

Represents a qualified XML name, as obtained using the name method of an E4X XML object instance.

Instance Properties
| ocal Nane Local name

uri Uniform Resource ldentifier

C.12. RangeError class

Error exception class for failures due to parameters which have a value which is outside an allowed
range.

175

ProntoScript Developer's Guide

C.13. Referencekrror class

Error exception class for failures due to use of a variable which is not defined.

C.14. RegExp class

Representation of a regular expression.

Class Properties

i nput The complete string that was tested in the last regular expres-
sion match.

| ast Mat ch The text of the last regular expression match.

| ast Par en Last parenthesized substring match of the last regular expres-
sion applied.

| ef t Cont ext Substring preceding the last regular expression match.

ri ght Cont ext Substring following the last regular expression match.

$ Shortcut for the | ef t Cont ext property.

$' Shortcut for the ri ght Cont ext property.

$_ Shortcut for the i nput property.

$+ Shortcut for the | ast Par en property.

$& Shortcut for the | ast Mat ch property.

$1 First parenthesized substring match of the last regular expres-
sion applied.

$2 Second parenthesized substring match of the last regular ex-

pression applied.

$3 Third parenthesized substring match of the last regular expres-
sion applied.
$4 Fourth parenthesized substring match of the last regular ex-

pression applied.

$5 Fifth parenthesized substring match of the last regular expres-
sion applied.

$6 Sixth parenthesized substring match of the last regular expres-
sion applied.

$7 Seventh parenthesized substring match of the last regular ex-

pression applied.

$8 Eighth parenthesized substring match of the last regular ex-
pression applied.

$9 Nineth parenthesized substring match of the last regular ex-
pression applied.

176

ProntoScript Developer's Guide

Instance Properties

gl obal

i gnor eCase
| ast | ndex
mul tiline

source
Instance methods

conpi |l e()

exec()

test ()

C.15. String class

Representation of a text string.

Instance Properties

[ength

Class methods

f r ontChar Code()

Instance methods

anchor ()
bi g()

bl i nk()
bol d()

char At ()

char CodeAt ()

concat ()

Wether the regular expression should match once (f al se),
or for every occurance in the input (t r ue).

Wether the regular expression should match case-sensitive
(f al se), or case-insensitive (t r ue).

Index of the last match, also used for determining the start of
the next match attempt.

Wether the regular expression should match accross multiple
lines (t r ue), or not (f al se).

The regular expression text

Optimize the regular expression for repeated use.

Execute the regular expression on a string, returning a result
array.

Test if the regular expression matches a string.

Number of characters in the string

Construct a string from one or more Unicode character codes.

Return the string instance, surrounded with the HTML ele-
ment tags and </ a>

Return the string instance, surrounded with the HTML ele-
ment tags <bi g>and </ bi g>

Return the string instance, surrounded with the HTML ele-
ment tags <bl i nk> and </ bl i nk>

Return the string instance, surrounded with the HTML ele-
ment tags and </ b>

Return the character at the specified index.

Return the Unicode character code of the character at the
specified index.

Append the arguments to the string instance

177

ProntoScript Developer's Guide

fixed()

fontcol or ()

fontsize()

i ndexOr ()

italics()

| ast | ndexCf ()

i nk()

| ocal eConpar e()
mat ch()

repl ace()
search()

slice()

smal | ()

split()

strike()

sub()

substr ()

substring()

sup()

quot e()

t oLower Case()

t oLocal eLower Case()

t oLocal eUpper Case()

Return the string instance, surrounded with the HTML ele-
ment tags <tt >and </tt >

Return the string instance, surrounded with the HTML ele-
ment tags <f ont col or=...>and

Return the string instance, surrounded with the HTML ele-
ment tags <f ont si ze=...>and

Return the character index of the first occurance of a specified
string in the string instance

Return the string instance, surrounded with the HTML ele-
ment tags <i >and </ i >

Return the character index of the last occurance of a specified
string in the string instance

Return the string instance, surrounded with the HTML ele-
ment tags and </ a>

Compare a string for alphabetic sorting

Apply a regular expression to the string instance.

Perform a regular expression search-and-replace.

Fast search using a regular expression in the string instance.

Return a substring, specified by start and end indices (of which
the latter may be negative to refer to an offset to the end of
the string).

Return the string instance, surrounded with the HTML ele-
ment tags <smal | > and </ smal | >

Return an array of substrings from the string instance, based
on a specified separator string.

Return the string instance, surrounded with the HTML ele-
ment tags <stri ke>and </ stri ke>

Return the string instance, surrounded with the HTML ele-
ment tags <sub> and </ sub>

Return a substring, specified by start index and length.
Return a substring, specified by start and end indices.

Return the string instance, surrounded with the HTML ele-
ment tags <Sup> and </ sup>

Return the string instance, surrounded with quotes

Return the string instance, replacing all uppercase characters
with corresponding lowercase characters.

Return the string instance, replacing all uppercase characters
with corresponding lowercase characters.

Return the string instance, replacing all lowercase characters
with corresponding uppercase characters.

178

ProntoScript Developer's Guide

t oUpper Case() Return the string instance, replacing all lowercase characters
with corresponding uppercase characters.

C.16. SyntaxError class

Error exception class for script parsing failures encountered in the compilation of a script fragment.

C.17. TypeError class

Error exception class for failures due to an unexpected type of a value.

C.18. URIError class

Error exception class for failures encountered in URI processing.

C.19. XML class

Representation of an XML document or document fragment.

Class Properties

i gnor eConmrent s Wether comments are ignored or not when parsing XML.
i gnor ePr ocessi ngl n- Wether processing instructions are ignored or not when pars-
structions ing XML.
i gnor eWi t espace Wether white space is ignored or not when parsing XML.
prettyPrinting Wether XML serialization methods should reformat the XML
or not
prettyl ndent The amount of spaces to use for indentation when pr et -

tyPrintingistrue

Instance methods

addNanespace() Add a namespace to the XML object

appendChi | d() Append an XML object to the end of the XML object instance.

attribute() Obtain the value of a specified attribute.

attributes() Obtain the attribute values of the XML object instance.

chi I d() Return the children of the XML object instance.

chi | dl ndex() Return the index of an XML object within the XML object
instance.

children() Obtain the children of the XML object instance, in sequence
order.

conment s() Obtain the comments of the XML object instance, in sequence
order.

cont ai ns() Test if an XML object is contained within the XML object in-
stance.

179

ProntoScript Developer's Guide

copy()

descendant s()

el ement s()

hasConpl exCont ent ()

hasSi npl eCont ent ()

i nScopeNanespaces()

i nsert Chil dAfter ()

i nsert Chi | dBef ore()

| engt h()

| ocal Nane()

name()
nanespace()

nanespaceDecl ar a-

tions()

nodeKi nd()

normal i ze()
par ent ()
prependChi | d()

processi ngl nstruc-

tions()

renoveNanespace()
repl ace()

set Chi I dren()

set Local Nare()
set Nare()

set Nanmespace()
text ()

t oXMLSt ri ng()

Return a copy of the XML object instance.

Obtain all XML nodes matching a name, taking into account
the node hierarchy.

Obtain the XML elements of an XML object instance.

Tests if the XML object instance has multiple layers of XML
nodes.

Tests if the XML object instance has only a single layer of XML
nodes.

Return the namespaces relevant to the XML object instance.

Add an XML object after a given XML object in the XML object
instance.

Add an XML object before a given XML object in the XML
object instance.

Return the number of XML documents in the XML object in-
stance.

Return the local name part of the qualified name of the XML
object instance.

Return the qualified name of the XML object instance.
Return the specified namespace of the XML object instance.

Return the namespace declarations of the XML object in-
stance.

Return the XML node type of the XML node which the XML
object instance represents.

Normalizes the XML object instance.
Return the parent of an XML object instance.
Add an XML object to the begin of the XML object instance.

Obtain the XML processing instructions of an XML object in-
stance.

Remove a namespace from the XML object instance.
Replace a specified property in the XML object instance.
Set the child properties of the XML object instance.

Set the local name part of the XML object instance.

Set the name of the XML object instance.

Set the namespace of the XML object instance.

Return the XML text nodes of the XML object instance.

Return a string representation of the XML object instance.

180

ProntoScript Developer's Guide

Appendix D. Predefined tags

The tags defined below have a special meaning. Avoid using them for your own widgets.

The following tags are defined for the firm keys:

Firm button Tag

1 (left-most) PS_FI RML

2 PS_FI RV

3 PS_FI RVB

4 PS_FI Rv4

5 (right-most) PS_FI RV

Hard button tags:

Hard button Tag

Back PS_BACK
Backlight PS_BACKLI GHT

Channel down

PS_CHANNEL_DOWN

Channel up

PS_CHANNEL_UP

Cursor down

PS_CURSCOR_DOMWN

Cursor left

PS_CURSOR_LEFT

Cursor right

PS_CURSOR_RI GHT

Cursor up PS_CURSOR_UP
Guide PS_GUI DE
Home PS_HOVE

Info PS_I NFO

OK PS_OK

Menu PS_MENU

Mute PS_MJTE

Page down PS PAGE_ DO
Page up PS_PAGE_UP
Power PS_PONER
Volume down PS_VOLUVE_DOWN
Volume up PS VOLUVE_UP
Predefined activity tags:

Activity Tag

System activity PS_SYSTEM
Reusable Macros PS_MACROS
The system page has also a special tag:

Page Tag

System page PS_SYSTEM

181

ProntoScript Developer's Guide

Debug widget tag:
Page Tag
Debug panel _PS _DEBUG _

182

ProntoScript Developer's Guide

Appendix E. Pronto font

The following tables list the contents of the ProntoMaestro font that is available on the control panel.
These special unicode characters can be put in a text using the \ u prefix followed by the four-digit,
hexadecimal unicode number.

For example, consider the following button script:

| abel = "Press \uF087 to start the novie";

This will put the text "Press » to start the movie" on the button label.

Table E.1. Basic Latin font symbols

0|1 |23 |4|5|6|7|[8|9|A|B|C|[D|E]|F
0020 il s el ()]]+ - /
o030 (0 (1|2 |3 |4 |5/6|7|8|9|:|:|<|=|>|7
w04 @ A B/ C/ D/ E F|G H|I|J K| L|M 0o
ws0 | PIQ|R| S| T|U V| W XY |Z | [|\|]1]"]|._
0060 | " fa|b|c|d|e|f|g| h|i|j|k|]l | m|n
070 |p|qg|r|s|t|ju|v|iw|x|y | z|{|I|}]-

Table E.2. Supplemental Latin font symbols

01|23 5 7189 |A|B|C|D|E|F
00A0 i ¢ £ €|¥| |5 © ¢ «| - ®
00B0O | ° | + | 2| 3| " |p|q A < A BT B 4
ooco A|A/A|/A|/AA E|C|E|E|E|E|T T |T]|I
oo | pIN|O|O|O|O0O|O0O| x| 0O/UI0O|0| Y Db R
OOE0 | a |a | a|a|/a|a&a | x|c|e|le|e @& 1 |1/ [71T]T7
OOFO | 3 ' A |0 06|00 0|+~ | |lU|jlGa| Q| 0G|y |b|YV
o100 Ala /Al a/Ala|C|l¢|C|le|C|lec|C|le | D|da
0110 |p|d | E|e |E| & | E|e | E|e | E|e G|ag|G|g
020 |G| g |G| g | A A |® | n|T |7 T |71 | T |7 |[I]i
o130 | T | v ||| T |7 K|k «|[L]T]L1T]L|Tr| L
0140 | | |t [+ | N|n | N|n|N|A|n|/N|n|O|0o O|Oo
0150 |0 | 6 |CE|oce | R|F|R|Tr|R|F|S|s|S|s8|S s
060 | S || T |t |T| v |F|¢t 0|la|0|a/U0U|/a|0 a
0170 |0 |G|V |u /W | w | Y|y |Y |Z|z|Z |z |Z|z]|Tf
0190 f

Table E.3. Spacing modifier font symbols

0|1 /2|3|4|5|6|7|8|9|A|B|C|DJ|E]|F

02C0 o

183

ProntoScript Developer's Guide

‘ 02D0 ‘

Table E.4. Greek font symbols

0 1 2 3 4 5 6 7 | 8 9| A|B | C|D]|E F
0390 A
03A0 Q
03Co0 n
Table E.5. Cyrillic font symbols
0 1 2 3 4 5 6 7 | 8 9| A|B | C|D]|E F
040 |/A|B|B|r|a E (X |3 W W K|/ n M H|O|n
0420 | P | C|T|Y | | X | U|Y W W B bl | b| 3 | A
0430 |a | 6 | B|r|pag|le|w|3|wmw| nW| kKk|n|M|H|O0|n
0440 ' p|lc | T|Y|d | X |Uu|y| w| w| bB| bl | b|>3 |1
Table E.6. Hebrew font symbols
0|1 2 |34 5|6 |7]|8]|9 C|D|E
0500 | x [a | a N1 *7 (D% |0 |n|
0560 |2 o |y 9|9 |Y|s|p|a|¥v N
Table E.7. General Punctuation font symbols
01|23 |4|5|6|7|8|9|A|B|C|DJE]|F
2010 - | =) .
2020 t S °
2030 | %o < >
Table E.8. Currency font symbols
0123 |4|5|6|7|8|9| A|B|C|DJE]|F
20A0 €
Table E.9. Letterlike font symbols
0|12 |3 |4|5|6|7|8|9|A|B|C|DJ|E]|F
2120 ™
Table E.10. Mathematical operator font symbols
0 1 3 4 5 6 7 | 8 9| A|B | C|D]|E
2200 9 n
2210 Yy | - -~ vV 0
2220 [
2240 ~

184

()
O
)
O
IS
|
()]
(o
O
()
>
()
|
')
(o
=
O
(Vg
@)
)
-
O
|
oo

Table E.11. Geometrical shape font symbols

I?.O_OGhuv@éA«B"I&

AZic e/ A|FIO A~ H

.__M]m}ﬂﬂu.@@G,VwMM

sy |- = —H 8| <& E|D||>

+ | X ||V 4d® @ oo

] * —~IN|=|Np» | | § |40 D@

)91Y.IV.<D..”0“.H‘U,e‘u

— |0 [T x| & | x|« 1D [(P

- No 2oz A A KB B S

" &0 |w >« |> 8|7 (X |@o|(0]e

M 2w w Do |s|=|v O =080

» ® (s QT |~|: Bl |8 |0o|w®|©
w

..m #=mOo|w| oln f: o 4| fF oM@ e

,_m N o x| =] - 241480 w|o|=

3 -~|=l<lol=|oB]- |-lO|® z|a@|=

d clela a@a ¥V @00
w

185

ProntoScript Developer's Guide

186

ProntoScript Developer's Guide

Further reading

6 Note
We strongly encourage you to get a copy of the [Flanagan] book! For the Pronto development team
it has proven itself as a bible. When giving support to you, it can be most effective to refer to a
particular section or example in this book.

[Flanagan] David Flanagan. Copyright © 2006, 2002, 1998, 1997, 1996, O'Reilly & Media, Inc.. Paula Ferguson.
0-596-10199-6. O'Reilly & Media, Inc.. JavaScript: The Definitive Guide, Fifth Edition.

[Crockford] Douglas Crockford. Copyright © 2008 O'Reilly & Media, Inc.. 0-596-51774-2. O'Reilly & Media, Inc..
JavaScript: The Good Parts. Unearthing the Excellence in JavaScript.

A very useful tool for checking your script for errors (unfortunately it does not support E4X though):
[JSLint] JSLint, The JavaScript Verifier [http://www.jslint.com/] .

A very extensive reference and a guide on the Core JavaScript 1.6, as well as a "re-introduction to JavaScript"
can be found at:

[Mozilla] JavaScript - Mozilla Developer Center [http://developer.mozilla.org/en/JavaScript] .

ECMA-262 specifies a standardized variant of the JavaScript language, on which ProntoScript builds. This standard
documents most of the Core JavaScript features availabe in ProntoScript:

[ECMA262] Standard ECMA-262, 3rd edition [http://www.ecma-international.org/publications/stan-
dards/Ecma-262.htm] . Ecma International. ECMAScript Language Specification.

The E4X support available in ProntoScript is specified by the ECMA-357 standard:

[ECMA357] Standard ECMA-357 [http://[www.ecma-international.org/publications/standards/Ecma-357.htm] .
Ecma International. ECMAScript for XML (E4X) Specification.

Many TCP/IP-related standards are published by the Internet Engineering Task Force in the form of RFCs (Re-
quests for Comments):

[RFC768] RFC768 [http://www.ietf.org/rfc/rfc768.txt] . The Internet Engineering Task Force (IETF). User Data-
gram Protocol.

[RFC793] RFC793 [http://www.ietf.org/rfc/rfc793.txt] . The Internet Engineering Task Force (IETF). Transmission
Control Protocol - DARPA Internet program - Protocol Specification.

[RFC1945] RFC1945 [http://www.ietf.org/rfc/rfc1945.txt] . The Internet Engineering Task Force (IETF). Hypertext
Transfer Protocol — HTTP/1.0.

[RFC2616] RFC2616 [http://www.ietf.org/rfc/rfc2616.txt] . The Internet Engineering Task Force (IETF). Hypertext
Transfer Protocol — HTTP/1.1.

[RFC3986] RFC3986 [http://www.ietf.org/rfc/rfc3986.txt] . The Internet Engineering Task Force (IETF). Uniform
Resource Identifier (URI): Generic Syntax.

187

http://www.jslint.com/
http://www.jslint.com/
http://developer.mozilla.org/en/JavaScript
http://developer.mozilla.org/en/JavaScript
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt

ProntoScript Developer's Guide

188

ProntoScript Developer's Guide

Index

Symbols

$& property (RegExp), 176
$' property (RegExp), 176

$+ property (RegExp), 176
$1 property (RegExp), 176
$2 property (RegExp), 176
$3 property (RegExp), 176
$4 property (RegExp), 176
$5 property (RegExp), 176
$6 property (RegExp), 176
$7 property (RegExp), 176
$8 property (RegExp), 176
$9 property (RegExp), 176
$_ property (RegExp), 176
$° property (RegExp), 176
%, 8

&, 10

* 8

+, 8

++ 8

=== 9

__count___ property (Object), 175
__defineGetter__ () method (Object), 175
__defineSetter__ () method (Object), 175
__lookupGetter__ () method (Object), 175
__lookupSetter__ () method (Object), 175
__parent__ property (Object), 175
__proto___ property (Object), 175

{,10

[, 10

A

abort() method (HttpRequest), 161
abs() method (Math), 16, 173
acos() method (Math), 173
Activity class, 77

callback functions, 81

class methods, 80

instance methods, 83

instance properties, 77

label property, 77

onEntry property, 78

onExit property, 78

onRotary property, 79

onSleep property, 79

onWake property, 79

page() method, 83

rotarySound property, 80

scheduleAfter() method, 29, 30, 80

tag property, 78

widget() method, 83

wifiEnabled property, 80
Activity script, 35
activity() method (CF), 85
addButton() method (GUI), 26, 93
addEventListener() method (System), 115
addNamespace() method (XML), 179
addPanel() method (GUI), 26, 94
alert() method (GUI), 95
anchor() method (String), 177
and, 10
appendChild() method (XML), 179
apply() method (Function), 173
arguments property (Function), 172
arity property (Function), 172
Array class, 8, 15, 169

concat() method, 169

every() method, 169

filter() method, 169

forEach() method, 169

indexOf() method, 169

join() method, 169

lastindexOf() method, 169

length property, 169

map() method, 169

pop() method, 169

push() method, 169

reverse() method, 169

shift() method, 169

slice() method, 169

some() method, 169

sort() method, 170

splice() method, 170

unshift() method, 170
asin() method (Math), 173
atan() method (Math), 173
atan2() method (Math), 173
attribute() method (XML), 179
attributes() method (XML), 179

B
Background, 22
bgcolor property (Widget), 22, 137
big() method (String), 177
Bitmap image file format (BMP), 57
bitrate property (Serial), 109
blink() method (String), 177
BMP, 57
bold property (Widget), 138
bold() method (String), 177
Boolean class, 8, 15, 170
break, 12
Breakpoints

adding, 75

removing, 75
Button script, 22

189

ProntoScript Developer's Guide

Buttons, 22
Button script, 22
colors, 25
Firm keys, 25
Hard buttons, 25
holding, 24
motions, 24
press, 23
release, 23
toggle, 23

C
C/C++,8,8,9, 11
call() method (Function), 173
caller property (Function), 173
Camel case, 18
case, 11
ceil() method (Math), 16, 173
CF class, 84

activity() method, 85

class methods, 85

class properties, 85

extender property, 39, 85

page() method, 86

widget() method, 87
charAt() method (String), 177
charCodeAt() method (String), 177
child() method (XML), 179
childindex() method (XML), 179
children() method (XML), 179
close() method (TCPSocket), 129
close() method (UDPSocket), 133
Color, 22
color property (Widget), 22, 138
comments() method (XML), 179
compile() method (RegExp), 177
concat() method (Array), 169
concat() method (String), 177
concurrency, 27, 65
connect() method (TCPSocket), 128
connected property (TCPSocket), 125
contains() method (XML), 179
copy() method (XML), 180
cos() method (Math), 173
Currency, 184

converter, 45
Custom symbols, 185
Cyrillic, 184

D

databits property (Serial), 109
Date class, 15, 170
getDate() method, 170
getDay() method, 170
getFullYear() method, 170
getHours() method, 170

getMilliseconds() method, 170
getMinutes() method, 171
getMonth() method, 171
getSeconds() method, 171
getTime() method, 171
getTimezoneOffset() method, 171
getUTCDate() method, 171
getUTCDay/() method, 171
getUTCFullYear() method, 171
getUTCHours() method, 171
getUTCMilliseconds() method, 171
getUTCMinutes() method, 171
getUTCMonth() method, 171
getUTCSeconds() method, 171
getYear() method, 171
now() method, 170
parse() method, 170
setDate() method, 171
setFullYear() method, 171
setHours() method, 171
setMilliseconds() method, 172
setMinutes() method, 171
setMonth() method, 171
setSeconds() method, 172
setTime() method, 171
setUTCDate() method, 171
setUTCFullYear() method, 171
setUTCHours() method, 171
setUTCMilliseconds() method, 171
setUTCMinutes() method, 172
setUTCMonth() method, 172
setUTCSeconds() method, 172
setYear() method, 172
toDateString() method, 172
tolLocaleDateString() method, 172
tolLocaleFormat() method, 172
tolLocaleString() method, 172
tolLocaleTimeString() method, 172
toTimeString() method, 172
toUTCString() method, 172
UTC() method, 170
Debug widget, 69
Debugger
Breakpoints, 75
ProntoScript, 73
Stack, 75
Watches, 75
decodeURI() method, 14
decodeURIComponent() method, 14
delay() method (System), 29, 115
descendants() method (XML), 180
Diagnostics class, 88
class methods, 88
log() method, 88
DNSResolver class, 89
callback functions, 90
class methods, 89

190

ProntoScript Developer's Guide

resolve() method, 89

E
E property (Math), 173
elements() method (XML), 180
else, 10
encodeURI() method, 14
encodeURIComponent() method, 14
EPG, 27
Error class, 15, 172
fileName property, 172
lineNumber property, 172
message property, 172
escape() method, 14
eval() method, 14
EvalError class, 15, 172
Events
unsolicited, 42
every() method (Array), 169
exception, 12, 27
exec() method (RegExp), 177

executeActions() method (Widget), 27, 38, 147

from page script, 27
exp() method (Math), 173
Extender, 39

Inputs, 41

Limitations, 41

Relays, 41

Serial ports, 39
Extender class, 90

input property, 91

instance properties, 91

relay property, 91

serial property, 92
extender property (CF), 39, 85

F
false, 8, 9
fileName property (Error), 172
filter() method (Array), 169
fixed() method (String), 178
floor() method (Math), 16, 173
font property (Widget), 138
fontcolor() method (String), 178
fontSize property (Widget), 139
fontsize() method (String), 178
for, 12
forEach() method (Array), 169
fromCharCode() method (String), 177
function, 13
Function class, 15, 172
apply() method, 173
arguments property, 172
arity property, 172
call() method, 173
caller property, 173

length property, 173
name property, 173

G
GEF, 62, 63
Geometrical shapes, 185
Gestures, 24
get() method (Input), 102
get() method (Relay), 107
getAllResponseHeaders() method (HttpRequest), 161
getApplicationVersion() method (System), 116
getBatteryStatus() method (System), 117
getBgColor() method (Widget), 148
getBootloaderVersion() method (System), 117
getColor() method (Widget), 148
getDate() method (Date), 170
getDay() method (Date), 170
getDisplayDate() method (GUI), 96
getDisplayTime() method (GUI), 96
getFirmwareVersion() method (System), 118
getFreeCFMemory() method (System), 118
getFullYear() method (Date), 170
getGlobal() method (System), 33, 116
getHours() method (Date), 170
getHTTP() method , 155
getHTTPBinary() method , 155
getHTTPXML() method , 156
getlmage() method (Widget), 149
getlRVersion() method (System), 118
getLabelSize() method (Widget), 150
getMilliseconds() method (Date), 170
getMinutes() method (Date), 171
getModel() method (System), 119
getMonth() method (Date), 171
getNetlinkStatus() method (System), 119
getResponseHeader() method (HttpRequest), 161
getSeconds() method (Date), 171
getSerial() method (System), 120
getTime() method (Date), 171
getTimezoneOffset() method (Date), 171
getUTCDate() method (Date), 171
getUTCDay() method (Date), 171
getUTCFullYear() method (Date), 171
getUTCHours() method (Date), 171
getUTCMilliseconds() method (Date), 171
getUTCMinutes() method (Date), 171
getUTCMonth() method (Date), 171
getUTCSeconds() method (Date), 171
getYear() method (Date), 171
global property (RegExp), 177
Greek, 184
GUI class, 92

addButton() method, 26, 93

addPanel() method, 26, 94

alert() method, 95

class methods, 93

191

ProntoScript Developer's Guide

class properties, 93
getDisplayDate() method, 96
getDisplayTime() method, 96
height property, 93
updateScreen() method, 97
widget() method, 35, 97
width property, 93

H
halign property (Widget), 139

hasComplexContent() method (XML), 180

hasOwnProperty() method (Object), 175

hasSimpleContent() method (XML), 180

Hebrew, 184

height property (GUI), 93

height property (Image), 99

height property (Widget), 139

Hide, 20

HTTP 51, 51, 52, 53, 53, 59
Library, 59, 155

HttpRequest class, 157
abort() method, 161
callback functions, 160
getAllResponseHeaders() method, 161
getResponseHeader() method, 161
instance methods, 161
instance properties, 158
onconnect property, 158
onreadystatechange property, 158
open() method, 162
overrideMimeType() method, 163
readyState property, 158
responseBinary property, 159
responseText property, 159
responseXML property, 159
send() method, 163
sendChunk() method, 163
setRequestHeader() method, 164
status property, 159
statusText property, 160
withCredentials property, 160

|

identity, 9

if, 10

ignoreCase property (RegExp), 177
ignoreComments property (XML), 179

ignoreProcessinglnstructions property (XML), 179

ignoreWhitespace property (XML), 179
Image

external, 57

stretching, 57
Image class, 98

height property, 99

instance properties, 99

width property, 99

Images

stretching, 21
include() method (System), 120
indexOf() method (Array), 169
indexOf() method (String), 178
input, 41
Input class, 99

callback functions, 101

get() method, 102

instance methods, 101

instance properties, 100

match() method, 102

onData property, 100

onError property, 100

onTimeout property, 100

wait() method, 103
input property (Extender), 91
input property (RegExp), 176
inScopeNamespaces() method (XML), 180
insertChildAfter() method (XML), 180
insertChildBefore() method (XML), 180
isFinite() method, 14
isNaN() method, 14
isPrototypeOf() method (Object), 175
italic property (Widget), 140
italics() method (String), 178

)

Java, 8,12

JavaScript, 7

join() method (Array), 169

Joint Photographic Experts Group image file format
(JPEG), 57

JPEG, 57

JPG, 57

L

Label

changing, 18
label property (Activity), 77
label property (Namespace), 174
label property (Page), 104
label property (Widget), 140
lastindex property (RegExp), 177
lastindexOf() method (Array), 169
lastindexOf() method (String), 178
lastMatch property (RegExp), 176
lastParen property (RegExp), 176
Latin, 183, 183
left property (Widget), 140
leftContext property (RegExp), 176
length property (Array), 169
length property (Function), 173
length property (String), 177
length() method (XML), 180
Library, 43

192

ProntoScript Developer's Guide

attaching, 43

creation, 44

example, 45

installation, 44

loading, 43, 44

manually loading, 44

protected, 45

using, 43

version, 44
lineNumber property (Error), 172
link() method (String), 178
literal

numeric, 7
LN10 property (Math), 173
LN2 property (Math), 173
localeCompare() method (String), 178
localName property (QName), 175
localName() method (XML), 180
lock-up, 65
log() method (Diagnostics), 88
log() method (Math), 173
LOG10E property (Math), 173
LOG2E property (Math), 173
loop

for, 12

while, 12

M

Macro, 28
map() method (Array), 169
match() method (Input), 102
match() method (Serial), 112
match() method (String), 178
Math class, 15, 16, 173
abs() method, 173
acos() method, 173
asin() method, 173
atan() method, 173
atan2() method, 173
ceil() method, 173
cos() method, 173
E property, 173
exp() method, 173
floor() method, 173
LN10 property, 173
LN2 property, 173
log() method, 173
LOG10E property, 173
LOG2E property, 173
max() method, 174
min() method, 174
Pl property, 173
pow() method, 174
random() method, 174
round() method, 174
sin() method, 174

sqrt() method, 174

SQRT1_2 property, 173

SQRT?2 property, 173

tan() method, 174
Mathematical operator font symbols, 184
max() method (Math), 174
MAX_VALUE property (Number), 174
mcastjoin() method (UDPSocket), 133
mcastLeave() method (UDPSocket), 134
message property (Error), 172
min() method (Math), 174
MIN_VALUE property (Number), 174
Modules

creating, 61

hidden pages, 61

publishing, 62

template, 61

using, 62
Multicast, 55

receiving, 55

sending, 55

TTL, 55
multiline property (RegExp), 177

N

name property (Function), 173
name() method (XML), 180
Namespace class, 15, 174
label property, 174
uri property, 174
namespace() method (XML), 180
namespaceDeclarations() method (XML), 180
NaN property (Number), 174
NEGATIVE_INFINITY property (Number), 174
Nested scripting, 65
Network communication, 51
nodeKind() method (XML), 180
normalize() method (XML), 180
now() method (Date), 170
null, 7, 9
number
floating point, 7
Number class, 15, 174
MAX_VALUE property, 174
MIN_VALUE property, 174
NaN property, 174
NEGATIVE_INFINITY property, 174
POSITIVE_INFINITY property, 174
toExponential() method, 174
toFixed() method, 174
tolLocaleString() method, 174
toPrecision() method, 174

o

Object class, 15, 174
hasOwnProperty() method, 175

193

ProntoScript Developer's Guide

isPrototypeOf() method, 175
propertylsEnumerable() method, 175
tolLocaleString() method, 175
toSource() method, 175
toString() method, 175
unwatch() method, 175
valueOf() method, 175
watch() method, 175
__count___ property, 175
__defineGetter__ () method, 175
__defineSetter__ () method, 175
__lookupGetter__ () method, 175
__lookupSetter__ () method, 175
__parent__ property, 175
__proto___ property, 175
onClose property (TCPSocket), 125
onconnect property (HttpRequest), 158
onConnect property (TCPSocket), 125
onData property (Input), 100
onData property (Serial), 109
onData property (TCPSocket), 126
onData property (UDPSocket), 131
onEntry property (Activity), 78
onEntry property (Page), 104
onError property (Input), 100
onError property (Serial), 110
onExit property (Activity), 79
onExit property (Page), 105
onHold property (Widget), 25, 27, 141
onHoldInterval property (Widget), 142
onlOError property (TCPSocket), 126
onlOError property (UDPSocket), 132
onMove property (Widget), 142
onPress property (Widget), 143
onreadystatechange property (HttpRequest), 158
onRelease property (Widget), 25, 143
onRotary property (Activity), 79
onSleep property (Activity), 79
onTimeout property (Input), 100
onTimeout property (Serial), 110
onWake property (Activity), 79
open() method (HttpRequest), 162
operators, 8
arithmetic, 8
assignment, 9
boolean, 10
comparative, 9
equality, 9
identity, 9
or, 10
overrideMimeType() method (HttpRequest), 163

P

Page class, 104
callback functions, 105
instance methods, 106

instance properties, 104
label property, 104
onEntry property, 104
onExit property, 105
repeatinterval property, 105
tag property, 105
widget() method, 106
page() method (Activity), 83
page() method (CF), 86
parallelism, 27
parent() method (XML), 180
parity property (Serial), 110
parse() method (Date), 170
parseFloat() method, 14
parseHttpUri() method , 164
parselnt() method, 14
parseUri() method , 165
Pl property (Math), 16, 173
PNG, 57
pop() method (Array), 169
pop-up, 24
Portable Network Graphics (PNG), 57
Position
changing, 20
POSITIVE_INFINITY property (Number), 174
pow() method (Math), 174
Power sense, 41
prependChild() method (XML), 180
prettylndent property (XML), 179
prettyPrinting property (XML), 179
primitive types, 7
print() method (System), 71, 121
processinglnstructions() method (XML), 180
Pronto font
Basic Latin symbols, 183
Currency symbols, 184
Custom symbols, 185
Cyrillic symbols, 184
General Punctuation symbols, 184
Geometrical shape symbols, 185
Greek symbols, 184
Hebrew symbols, 184
Letterlike symbols, 184
Mathematical operator symbols, 184
Spacing modifier symbols, 183
Supplemental Latin symbols, 183
ProntoEdit Professional, 2, 17, 25, 26, 27, 29, 35, 37,
37, 39, 39,52
v1.1, 19, 69
v2.3,2
v2.4,28
propertylsEnumerable() method (Object), 175
proxyHost property , 166
proxyPort property , 166
PS_BACK tag, 181
PS_BACKLIGHT tag, 181
PS_CHANNEL_DOWN tag, 181

194

ProntoScript Developer's Guide

PS_CHANNEL_UP tag, 181
PS_CURSOR_DOWVN tag, 181
PS_CURSOR_LEFT tag, 181
PS_CURSOR_RIGHT tag, 181
PS_CURSOR_UP tag, 181
_PS_DEBUG_ tag, 69, 182
PS_FIRM1 tag, 25, 181
PS_FIRM2 tag, 181

PS_FIRMS3 tag, 181

PS_FIRM4 tag, 181

PS_FIRMS tag, 181

PS_GUIDE tag, 181
PS_HOME tag, 181

PS_INFO tag, 181
PS_MACROS tag, 28, 181
PS_MENU tag, 181

PS_MUTE tag, 181

PS_OK tag, 181
PS_PAGE_DOWVN tag, 181
PS_PAGE_UP tag, 181
PS_POWVER tag, 181
PS_SYSTEM tag, 181, 181
PS_VOLUME_DOWVN tag, 181
PS_VOLUME_UP tag, 181
Punctuation, 184

push() method (Array), 169

Q

QName class, 15, 175
localName property, 175
uri property, 175

quote() method (String), 178

R

random() method (Math), 16, 174
RangeError class, 15, 175
read() method (TCPSocket), 129
readyState property (HttpRequest), 158
receive() method (Serial), 113
ReferenceError class, 15, 176
RegExp class, 15, 176

$& property, 176

$' property, 176

$+ property, 176

$1 property, 176

$2 property, 176

$3 property, 176

$4 property, 176

$5 property, 176

$6 property, 176

$7 property, 176

$8 property, 176

$9 property, 176

$_ property, 176

$° property, 176

compile() method, 177

exec() method, 177

global property, 177

ignoreCase property, 177

input property, 176

lastindex property, 177

lastMatch property, 176

lastParen property, 176

leftContext property, 176

multiline property, 177

rightContext property, 176

source property, 177

test() method, 177
regular expression, 16
Relay class, 106

get() method, 107

instance methods, 107

set() method, 107

toggle() method, 108
relay property (Extender), 91
remove() method (Widget), 150
removeEventListener() method (System), 121
removeNamespace() method (XML), 180
repeatinterval property (Page), 105
replace() method (String), 178
replace() method (XML), 180
reset() method (System), 122
resolve() method (DNSResolver), 89
responseBinary property (HttpRequest), 159
responseText property (HttpRequest), 159
responseXML property (HttpRequest), 159
Reusable macro, 28
reverse() method (Array), 169
rightContext property (RegExp), 176
rotarySound property (Activity), 80
round() method (Math), 174

S

scheduleActions() method (Widget), 27, 38, 151
scheduleAfter() method (Activity), 29, 30, 80
Scope, 33

Activity, 33

Local, 33

Page, 33
search() method (String), 178
send() method (HttpRequest), 163
send() method (Serial), 113
send() method (UDPSocket), 134
sendChunk() method (HttpRequest), 163
Serial class, 108

bitrate property, 109

callback functions, 111

databits property, 109

instance methods, 112

instance properties, 109

match() method, 112

onData property, 109

195

ProntoScript Developer's Guide

onError property, 110

onTimeout property, 110

parity property, 110

receive() method, 113

send() method, 113

stopbits property, 110
serial port

asynchronous, 40

configuring, 39

sending and receiving, 40

synchronous, 40
serial property (Extender), 92
set() method (Relay), 107
setBgColor() method (Widget), 152
setChildren() method (XML), 180
setColor() method (Widget), 152
setDate() method (Date), 171
setDebugMask() method (System), 122
setFullYear() method (Date), 171
setGlobal() method (System), 33, 123
setHours() method (Date), 171
setlmage() method (Widget), 153
setLocalName() method (XML), 180
setMcastTTL() method (UDPSocket), 135
setMilliseconds() method (Date), 172
setMinutes() method (Date), 171
setMonth() method (Date), 171
setName() method (XML), 180
setNamespace() method (XML), 180
setRequestHeader() method (HttpRequest), 164
setSeconds() method (Date), 172
setSocketLimit() method (TCPSocket), 126
setTime() method (Date), 171
setUTCDate() method (Date), 171
setUTCFullYear() method (Date), 171
setUTCHours() method (Date), 171
setUTCMilliseconds() method (Date), 171
setUTCMinutes() method (Date), 172
setUTCMonth() method (Date), 172
setUTCSeconds() method (Date), 172
setYear() method (Date), 172
shift() method (Array), 169
Show, 20
showHTTPImage() method , 167
sin() method (Math), 174
sleep mode, 30
slice() method (Array), 169
slice() method (String), 178
small() method (String), 178
Sockets

asynchronous, 52

error handling, 53

reusing, 54

synchronous, 51
some() method (Array), 169
sort() method (Array), 170
source property (RegExp), 177

Spacing, 183
splice() method (Array), 170
split() method (String), 178
sqrt() method (Math), 174
SQRT1_2 property (Math), 173
SQRT?2 property (Math), 173
status property (HttpRequest), 159
statusText property (HttpRequest), 160
stopbits property (Serial), 110
stretchlmage property (Widget), 144
strike() method (String), 178
string, 7
converting to number, 7
String class, 15, 177
anchor() method, 177
big() method, 177
blink() method, 177
bold() method, 177
charAt() method, 177
charCodeAt() method, 177
concat() method, 177
fixed() method, 178
fontcolor() method, 178
fontsize() method, 178
fromCharCode() method, 177
indexOf() method, 178
italics() method, 178
lastindexOf() method, 178
length property, 177
link() method, 178
localeCompare() method, 178
match() method, 178
quote() method, 178
replace() method, 178
search() method, 178
slice() method, 178
small() method, 178
split() method, 178
strike() method, 178
sub() method, 178
substr() method, 178
substring() method, 178
sup() method, 178
tolLocaleLowerCase() method, 178
tolLocaleUpperCase() method, 178
toLowerCase() method, 178
toUpperCase() method, 179
sub() method (String), 178
substr() method (String), 178
substring() method (String), 178
sup() method (String), 178
switch, 11
SyntaxError class, 15, 179
System class, 114
addEventListener() method, 115
callback functions, 123
class methods, 115

196

ProntoScript Developer's Guide

delay() method, 29, 115
getApplicationVersion() method, 116
getBatteryStatus() method, 117
getBootloaderVersion() method, 117
getFirmwareVersion() method, 118
getFreeCFMemory() method, 118
getGlobal() method, 33, 116
getlRVersion() method, 119
getModel() method, 119
getNetlinkStatus() method, 119
getSerial() method, 120

include() method, 120

print() method, 71, 121
removeEventListener() method, 121
reset() method, 122
setDebugMask() method, 122
setGlobal() method, 33, 123

T

tag property (Activity), 78
tag property (Page), 105
tag property (Widget), 144
tan() method (Math), 174
TCP, 51
TCPSocket class, 51, 124

callback functions, 127

class methods, 126

close() method, 129

connect() method, 128

connected property, 125

instance methods, 128

instance properties, 125

onClose property, 125

onConnect property, 125

onData property, 126

onlOError property, 126

read() method, 129

setSocketLimit() method, 126

write() method, 129
test() method (RegExp), 177
text() method (XML), 180
Timers, 29

Blocking wait, 29

non-blocking wait, 30

Page, 29
toDateString() method (Date), 172
toExponential() method (Number), 174
toFixed() method (Number), 174
toggle button, 27
toggle() method (Relay), 108
tolLocaleDateString() method (Date), 172
tolLocaleFormat() method (Date), 172
tolLocaleLowerCase() method (String), 178
tolLocaleString() method (Date), 172
tolLocaleString() method (Number), 174
tolLocaleString() method (Object), 175

tolLocaleTimeString() method (Date), 172
tolLocaleUpperCase() method (String), 178
toLowerCase() method (String), 178

top property (Widget), 144

toPrecision() method (Number), 174
toSource() method (Object), 175
toString() method (Object), 175
toTimeString() method (Date), 172
toUpperCase() method (String), 179
toUTCString() method (Date), 172
toXMLString() method (XML), 180
Transfer Control Protocol, 51
Transparency, 22

transparent property (Widget), 145

true, 8, 9

TTL, 55

TypeError class, 15, 179

U

UDP, 54
receiving, 54
sending, 54

UDPSocket class, 54, 130
callback functions, 132
close() method, 133
instance methods, 133
instance properties, 131
mcastjoin() method, 133
mcastLeave() method, 134
onData property, 131
onlOError property, 132
send() method, 134
setMcastTTL() method, 135

undefined, 7

unescape() method, 14

uneval() method, 14

Unicode, 7, 183

unshift() method (Array), 170

unwatch() method (Object), 175

updateScreen() method (GUI), 97

uri property (Namespace), 174

uri property (QName), 175

URIError class, 15, 179

User Datagram Protocol, 54

UTC() method (Date), 170

A\

valign property (Widget), 145
valueOf() method (Object), 175
variables, 7

visible property (Widget), 146

w

wait() method (Input), 103
watch() method (Object), 175
while, 12

197

ProntoScript Developer's Guide

Widget
Buttons, 22
color, 22
dynamic, 26
height, 21
label, 18
position, 20
size, 21
transparency, 22
visibility, 20
width, 21
Widget class, 136
bgcolor property, 22, 137
bold property, 138
callback functions, 146
color property, 22, 138
executeActions() method, 27, 38, 147
font property, 138
fontSize property, 139
getBgColor() method, 148
getColor() method, 148
getlmage() method, 149
getlabelSize() method, 150
halign property, 139
height property, 139
instance methods, 147
instance properties, 137
italic property, 140
label property, 140
left property, 140
onHold property, 25, 27, 141
onHoldInterval property, 142
onMove property, 142
onPress property, 143
onRelease property, 25, 143
remove() method, 150
scheduleActions() method, 27, 38, 151
setBgColor() method, 152
setColor() method, 152
setlmage() method, 153
stretchlmage property, 143
tag property, 144
top property, 144
transparent property, 145
valign property, 145
visible property, 146
width property, 146
widget() method (Activity), 83
widget() method (CF), 87
widget() method (GUI), 35, 97
widget() method (Page), 106
width property (GUI), 93
width property (Image), 99
width property (Widget), 146
wifiEnabled property (Activity), 80

withCredentials property (HttpRequest), 160

write() method (TCPSocket), 129

X

XCEF, 44, 62, 63

XGF, 62, 63

XML, 3
E4X, 3,4

XML class, 16, 179
addNamespace() method, 179
appendChild() method, 179
attribute() method, 179
attributes() method, 179
child() method, 179
childindex() method, 179
children() method, 179
comments() method, 179
contains() method, 179
copy() method, 180
descendants() method, 180
elements() method, 180
hasComplexContent() method, 180
hasSimpleContent() method, 180
ignoreComments property, 179
ignoreProcessinglnstructions property, 179
ignoreWhitespace property, 179
inScopeNamespaces() method, 180
insertChildAfter() method, 180
insertChildBefore() method, 180
length() method, 180
localName() method, 180
name() method, 180
namespace() method, 180
namespaceDeclarations() method, 180
nodeKind() method, 180
normalize() method, 180
parent() method, 180
prependChild() method, 180
prettylndent property, 179
prettyPrinting property, 179
processinglnstructions() method, 180
removeNamespace() method, 180
replace() method, 180
setChildren() method, 180
setLocalName() method, 180
setName() method, 180
setNamespace() method, 180
text() method, 180
toXMLString() method, 180

198

	ProntoScript Developer's Guide
	Table of Contents
	Preface
	1. Using this guide
	2. What’s new in 1.3
	3. What’s new in 1.2
	4. What’s new in 1.1

	Chapter 1. Introduction
	1.1. Why ProntoScript?
	1.2. A simple button script
	1.3. ProntoScript features
	1.3.1. Regular expressions
	1.3.2. E4X

	Chapter 2. Core JavaScript
	2.1. Variables
	2.1.1. Primitive types
	2.1.1.1. Numbers
	2.1.1.2. Strings
	2.1.1.3. Boolean

	2.1.2. Arrays

	2.2. Operators
	2.2.1. Arithmetic operators
	2.2.2. Comparative operators
	2.2.2.1. Assignment Operator =
	2.2.2.2. Equality Operator ==
	2.2.2.3. Identity Operator ===

	2.2.3. Bitwise operators

	2.3. Statement blocks
	2.4. Control flow
	2.4.1. if/else
	2.4.2. switch blocks
	2.4.3. while loops
	2.4.4. for loops
	2.4.5. break statement

	2.5. Exceptions
	2.6. Functions
	2.7. Objects
	2.8. Built-in functions
	2.9. Built-in classes
	2.9.1. Regular Expressions
	2.9.2. Math object

	Chapter 3. Widgets
	3.1. Panels
	3.1.1. Change the label
	3.1.2. Change the position
	3.1.3. Hide and show
	3.1.4. Label appearance
	3.1.5. Size
	3.1.6. Changing the image
	3.1.7. Modifying panel colors
	3.1.8. Changing background transparency

	3.2. Buttons
	3.2.1. Button scripts
	3.2.2. Press and release
	3.2.3. Continuous presses
	3.2.4. Motions
	3.2.5. Button colors and images

	3.3. Hard buttons
	3.4. Firm keys
	3.5. Dynamic widgets

	Chapter 4. Action Lists
	4.1. Execution action lists
	4.2. Reusable macros

	Chapter 5. Timers
	5.1. Blocking wait
	5.2. Page timer
	5.3. scheduleAfter()
	5.4. Behavior during sleep mode

	Chapter 6. Levels, scope and lifetime
	6.1. Levels
	6.2. Scope
	6.2.1. Local scope
	6.2.2. Page scope
	6.2.3. Activity scope
	6.2.4. System globals

	6.3. Lifetime

	Chapter 7. Activities and Pages
	7.1. Activity script
	7.1.1. Usage
	7.1.2. Home activity
	7.1.3. Rotary wheel
	7.1.4. Advanced rotary wheel example

	7.2. Page script
	7.2.1. Usage
	7.2.2. Page label
	7.2.3. Home page
	7.2.4. Jump to another activity
	7.2.5. Multiple page jumps within an activity

	Chapter 8. Extenders
	8.1. CF.extender[]
	8.2. Serial ports
	8.2.1. Configuring the serial port
	8.2.2. Sending and receiving
	8.2.3. Asynchronous operation

	8.3. Inputs
	8.3.1. Getting the state

	8.4. Relays
	8.5. Limitations

	Chapter 9. Libraries
	9.1. Using a library
	9.1.1. Attaching a library
	9.1.2. Attaching a library globally
	9.1.3. Loading a library
	9.1.4. Manually loading a library

	9.2. Installing a library
	9.2.1. Version Control

	9.3. Creating a library
	9.4. Protecting libraries
	9.5. Library example: Currency Converter

	Chapter 10. Network communication
	10.1. TCP connections
	10.1.1. Synchronous operation
	10.1.2. Asynchronous operation.
	10.1.3. Reusing TCPSocket instances

	10.2. UDP communication
	10.2.1. Sending UDP packets
	10.2.2. Receiving UDP packets
	10.2.3. Multicast
	10.2.3.1. Sending multicast datagrams
	10.2.3.2. Receiving multicast traffic

	Chapter 11. Getting external images
	Chapter 12. ProntoScript Modules
	12.1. Creating a ProntoScript Module
	12.1.1. Design an activity
	12.1.2. Using hidden pages for easy configuration

	12.2. Publishing a ProntoScript Module
	12.2.1. Publish as XCF file
	12.2.2. Publish as XGF file
	12.2.3. Publish as GEF file

	12.3. Using a ProntoScript Module
	12.3.1. If it was published as XCF file
	12.3.2. If it was published as XGF file
	12.3.3. If it was published as GEF file
	12.3.4. Configuring the added ProntoScript Module

	Chapter 13. Exceptional Scenarios
	13.1. Out of memory
	13.2. Nested scripting
	13.3. Infinite scripts
	13.4. Invalid arguments
	13.5. Script Exceptions

	Chapter 14. Debugging your script
	14.1. Debug widget
	14.2. System.print()
	14.3. ProntoScript Console
	14.4. ProntoScript Debugger
	14.4.1. Toolbar
	14.4.2. Explorer Window
	14.4.3. Script Windows
	14.4.4. Breakpoints Window
	14.4.5. Watches Window
	14.4.6. Stack View

	Appendix A. ProntoScript Classes Description (ProntoScript API)
	A.1. Activity class
	A.1.1. Instance properties
	A.1.1.1. activity.label
	A.1.1.2. activity.tag
	A.1.1.3. activity.onEntry
	A.1.1.4. activity.onExit
	A.1.1.5. activity.onRotary
	A.1.1.6. activity.onSleep
	A.1.1.7. activity.onWake
	A.1.1.8. activity.rotarySound
	A.1.1.9. activity.wifiEnabled

	A.1.2. Class methods
	A.1.2.1. Activity.scheduleAfter()

	A.1.3. Callback functions
	A.1.3.1. onEntryCallback
	A.1.3.2. onExitCallback
	A.1.3.3. onRotaryCallback
	A.1.3.4. onSleepCallback
	A.1.3.5. onWakeCallback

	A.1.4. Instance methods
	A.1.4.1. activity.page()
	A.1.4.2. activity.widget()

	A.2. CF class
	A.2.1. Class properties
	A.2.1.1. CF.extender

	A.2.2. Class methods
	A.2.2.1. CF.activity()
	A.2.2.2. CF.page()
	A.2.2.3. CF.widget()

	A.3. Diagnostics class
	A.3.1. Class methods
	A.3.1.1. Diagnostics.log()

	A.4. DNSResolver class
	A.4.1. Class methods
	A.4.1.1. DNSResolver.resolve()

	A.4.2. Callback functions
	A.4.2.1. dnsOnSuccessCallback
	A.4.2.2. dnsOnFailureCallback

	A.5. Extender class
	A.5.1. Instance properties
	A.5.1.1. extender.input
	A.5.1.2. extender.relay
	A.5.1.3. extender.serial

	A.6. GUI class
	A.6.1. Class properties
	A.6.1.1. GUI.height
	A.6.1.2. GUI.width

	A.6.2. Class methods
	A.6.2.1. GUI.addButton()
	A.6.2.2. GUI.addPanel()
	A.6.2.3. GUI.alert()
	A.6.2.4. GUI.getDisplayDate()
	A.6.2.5. GUI.getDisplayTime()
	A.6.2.6. GUI.updateScreen()
	A.6.2.7. GUI.widget()

	A.7. Image class
	A.7.1. Image class constructor
	A.7.1.1. Image()

	A.7.2. Instance properties
	A.7.2.1. image.height
	A.7.2.2. image.width

	A.8. Input class
	A.8.1. Instance properties
	A.8.1.1. input.onData
	A.8.1.2. input.onError
	A.8.1.3. input.onTimeout

	A.8.2. Callback functions
	A.8.2.1. onInputDataCallback
	A.8.2.2. onInputErrorCallback
	A.8.2.3. onInputTimeoutCallback

	A.8.3. Instance methods
	A.8.3.1. input.get()
	A.8.3.2. input.match()
	A.8.3.3. input.wait()

	A.9. Page class
	A.9.1. Instance properties
	A.9.1.1. page.label
	A.9.1.2. page.onEntry
	A.9.1.3. page.onExit
	A.9.1.4. page.repeatInterval
	A.9.1.5. page.tag

	A.9.2. Callback functions
	A.9.2.1. onEntryCallback
	A.9.2.2. onExitCallback

	A.9.3. Instance methods
	A.9.3.1. page.widget()

	A.10. Relay class
	A.10.1. Instance methods
	A.10.1.1. relay.get()
	A.10.1.2. relay.set()
	A.10.1.3. relay.toggle()

	A.11. Serial class
	A.11.1. Instance properties
	A.11.1.1. serial.bitrate
	A.11.1.2. serial.databits
	A.11.1.3. serial.onData
	A.11.1.4. serial.onError
	A.11.1.5. serial.onTimeout
	A.11.1.6. serial.parity
	A.11.1.7. serial.stopbits

	A.11.2. Callback functions
	A.11.2.1. onSerialDataCallback
	A.11.2.2. onSerialErrorCallback
	A.11.2.3. onSerialTimeoutCallback

	A.11.3. Instance methods
	A.11.3.1. serial.match()
	A.11.3.2. serial.receive()
	A.11.3.3. serial.send()

	A.12. System class
	A.12.1. Class methods
	A.12.1.1. System.addEventListener()
	A.12.1.2. System.delay()
	A.12.1.3. System.getGlobal()
	A.12.1.4. System.getApplicationVersion()
	A.12.1.5. System.getBatteryStatus()
	A.12.1.6. System.getBootloaderVersion()
	A.12.1.7. System.getFreeCFMemory()
	A.12.1.8. System.getFirmwareVersion()
	A.12.1.9. System.getIRVersion()
	A.12.1.10. System.getModel()
	A.12.1.11. System.getNetlinkStatus()
	A.12.1.12. System.getSerial()
	A.12.1.13. System.include()
	A.12.1.14. System.print()
	A.12.1.15. System.removeEventListener()
	A.12.1.16. System.reset()
	A.12.1.17. System.setDebugMask()
	A.12.1.18. System.setGlobal()

	A.12.2. Callback functions
	A.12.2.1. systemEventListener

	A.13. TCPSocket class
	A.13.1. TCPSocket class constructor
	A.13.1.1. TCPSocket()

	A.13.2. Instance properties
	A.13.2.1. tcpsocket.connected
	A.13.2.2. tcpsocket.onClose
	A.13.2.3. tcpsocket.onConnect
	A.13.2.4. tcpsocket.onData
	A.13.2.5. tcpsocket.onIOError

	A.13.3. Class methods
	A.13.3.1. TCPSocket.setSocketLimit()

	A.13.4. Callback functions
	A.13.4.1. onTCPSocketCloseCallback
	A.13.4.2. onTCPSocketConnectCallback
	A.13.4.3. onTCPSocketDataCallback
	A.13.4.4. onTCPSocketErrorCallback

	A.13.5. Instance methods
	A.13.5.1. tcpsocket.connect()
	A.13.5.2. tcpsocket.close()
	A.13.5.3. tcpsocket.write()
	A.13.5.4. tcpsocket.read()

	A.14. UDPSocket class
	A.14.1. UDPSocket class constructor
	A.14.1.1. UDPSocket()

	A.14.2. Instance properties
	A.14.2.1. udpsocket.onData
	A.14.2.2. udpsocket.onIOError

	A.14.3. Callback functions
	A.14.3.1. onUDPSocketDataCallback
	A.14.3.2. onUDPSocketErrorCallback

	A.14.4. Instance methods
	A.14.4.1. udpsocket.close()
	A.14.4.2. udpsocket.mcastJoin()
	A.14.4.3. udpsocket.mcastLeave()
	A.14.4.4. udpsocket.send()
	A.14.4.5. udpsocket.setMcastTTL()

	A.15. Widget class
	A.15.1. Instance properties
	A.15.1.1. widget.bgcolor
	A.15.1.2. widget.bold
	A.15.1.3. widget.color
	A.15.1.4. widget.font
	A.15.1.5. widget.fontSize
	A.15.1.6. widget.halign
	A.15.1.7. widget.height
	A.15.1.8. widget.italic
	A.15.1.9. widget.label
	A.15.1.10. widget.left
	A.15.1.11. widget.onHold
	A.15.1.12. widget.onHoldInterval
	A.15.1.13. widget.onMove
	A.15.1.14. widget.onPress
	A.15.1.15. widget.onRelease
	A.15.1.16. widget.stretchImage
	A.15.1.17. widget.tag
	A.15.1.18. widget.top
	A.15.1.19. widget.transparent
	A.15.1.20. widget.valign
	A.15.1.21. widget.visible
	A.15.1.22. widget.width

	A.15.2. Callback functions
	A.15.2.1. onMoveCallback
	A.15.2.2. onPressCallback

	A.15.3. Instance methods
	A.15.3.1. widget.executeActions()
	A.15.3.2. widget.getBgColor()
	A.15.3.3. widget.getColor()
	A.15.3.4. widget.getImage()
	A.15.3.5. widget.getLabelSize()
	A.15.3.6. widget.remove()
	A.15.3.7. widget.scheduleActions()
	A.15.3.8. widget.setBgColor()
	A.15.3.9. widget.setColor()
	A.15.3.10. widget.setImage()

	Appendix B. HttpLibrary API
	B.1. getHTTP() static method
	B.2. getHTTPBinary() static method
	B.3. getHTTPXML() static method
	B.4. HttpRequest class
	B.4.1. HttpRequest class constructor
	B.4.1.1. HttpRequest()

	B.4.2. Instance properties
	B.4.2.1. httprequest.onconnect
	B.4.2.2. httprequest.onreadystatechange
	B.4.2.3. httprequest.readyState
	B.4.2.4. httprequest.responseBinary
	B.4.2.5. httprequest.responseText
	B.4.2.6. httprequest.responseXML
	B.4.2.7. httprequest.status
	B.4.2.8. httprequest.statusText
	B.4.2.9. httprequest.withCredentials

	B.4.3. Callback functions
	B.4.3.1. onConnectCallback
	B.4.3.2. onReadyStateChangeCallback

	B.4.4. Instance methods
	B.4.4.1. httprequest.abort()
	B.4.4.2. httprequest.getAllResponseHeaders()
	B.4.4.3. httprequest.getResponseHeader()
	B.4.4.4. httprequest.open()
	B.4.4.5. httprequest.overrideMimeType()
	B.4.4.6. httprequest.send()
	B.4.4.7. httprequest.sendChunk()
	B.4.4.8. httprequest.setRequestHeader()

	B.5. parseHttpUri() static method
	B.6. parseUri() static method
	B.7. proxyHost static property
	B.8. proxyPort static property
	B.9. showHTTPImage() static method

	Appendix C. Core JavaScript Classes Description
	C.1. Array class
	C.2. Boolean class
	C.3. Date class
	C.4. Error class
	C.5. EvalError class
	C.6. Function class
	C.7. Math class
	C.8. Namespace class
	C.9. Number class
	C.10. Object class
	C.11. QName class
	C.12. RangeError class
	C.13. ReferenceError class
	C.14. RegExp class
	C.15. String class
	C.16. SyntaxError class
	C.17. TypeError class
	C.18. URIError class
	C.19. XML class

	Appendix D. Predefined tags
	Appendix E. Pronto font
	Further reading
	Index

